The MPNs as Inflammatory Diseases?

Perspectives on The Early Interferon Concept

Combination Therapy with Ruxolitinib and Interferon

Hans Hasselbalch
Department of Hematology
Roskilde Hospital
University of Copenhagen
Denmark

Mayo Clinic
Scottsdale
February 20-22, 2015
MPNs

ET – PV - PMF

A Human Inflammation Model ?

A Human Cancer Model ?

Chronic Inflammation – Genomic Instability - Clonal Evolution ?
Tumor Burden and Comorbidity Burden in MPNs

Comorbidity Burden

ET PV Post PV MF AML

Unknown genetic event JAK2 V617F, CALR

Lympho-myeloid precursor Stem cell

Chronic Inflammation ? Chronic phase Accelerated phase

Chronic Inflammation ? Chronic Inflammation ?
Conclusion I
Inflammation in The Bone Marrow

The Inflamed Bone Marrow

Cytokine Storm

Bone Marrow Failure

TNF-Alpha
IL-6, IL-8
IL-11, HGF

TNF-Alpha
IL-6, IL-8
IL-11, HGF
Conclusion II
Inflammation in The Circulation

Circulating Leukocyte – Platelet Aggregates
Microcirculatory Disturbances
Conclusion III

Inflammation in The Spleen
Conclusion IV

How to Quell the Fire?

• Early intervention when the chance of quelling the fire is the very best:

 • **STOP THE FUEL SUPPLY** : Interferon-alpha
 • **ANTIINFLAMMATION** : JAK1-2 inhibitor, statin HDACi?
Early Prefibrotic Myelofibrosis

MPN Inflammation Model

Chronic inflammation

Leukocyte and platelet activation
↑ Inflammatory cytokines

Premature atherosclerosis

Cytokine storm

Secondary cancer

Inflammation
Atherosclerosis
Secondary cancer
Leukemic transformation

JAK2 46/1 generator

Switch off

Switch on

Advanced Myelofibrosis
• **Chronic Inflammation in MPNs – evidence?**
 - Epidemiological?
 - Histopathological?
 - Clinical?
 - Biochemical?
 - Molecular (e.g. gene expression profiling)?

• **Perspectives?**
 - Early Intervention at The Time of Diagnosis?
Chronic Inflammation in MPNs

The Evidence?

Epidemiological data

• **Chronic Inflammation in MPNs – evidence?**
 - Epidemiological?
 - Histopathological?
 - Clinical?
 - Biochemical?
 - Molecular (eg. gene expression profiling)?

• **Perspectives?**
 - Early Intervention at The Time of Diagnosis?
Chronic Inflammation in MPNs

The Evidence?

Histopathological Data

Several reports supporting the participation of immune mechanisms in the development of bone marrow fibrosis.

Chronic Inflammation in MPNs

- Epidemiological ?
- Histopathological ?
- Clinical ?
- Biochemical ?
- Molecular (eg. gene expression profiling) ?

• Perspectives ?
 - Early Intervention at The Time of Diagnosis ?
Platelet–Leukocyte Interactions Link Inflammatory and Thromboembolic events

A Link Between Chronic Inflammation and Thrombosis in MPNs?

Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3

Tiziano Barbu, Alessandra Carobbio, Guido Finazzi, Alessandro M. Vannucchi, Giovanni Barosi, Elisabetta Antonioli, Paola Guglielmelli, Alessandro Pancrazzi, Silvia Salmoiraghi, Pio Zilio, Cosimo Ottomano, Roberto Marchioli, Ivan Cuccovillo, Barbara Bottazzi, Alberto Mantovani, and Alessandro Rambaldi on behalf of the AGIMM and IIC Investigators

Haematologica 2011;96(2):315-318

Landolfi R, Di Gennaro L

Editorial: Pathophysiology of thrombosis in myeloproliferative neoplasms

Haematologica 2011;96(2):183-186
A Link Between Chronic Inflammation and (Premature) Atherosclerosis in MPNs

The Evidence?

- Chronic inflammation has an important role in the development of atherosclerosis.
- Chronic inflammatory diseases (e.g., rheumatoid arthritis, psoriasis, and systemic lupus erythematosus) are associated with accelerated atherosclerosis (premature atherosclerosis).
- Chronic inflammation has an important impact on the development of premature atherosclerosis in patients with diabetes mellitus.
Chronic kidney disease in patients with the Philadelphia-negative chronic myeloproliferative neoplasms

Alexander Sidelmann Christensen a,*, Jonas Bech Möller b, Hans Carl Hasselbalch a

a Department of Hematology, Roskilde Hospital, University of Copenhagen, Roskilde, Denmark
b Quantitative Clinical Pharmacology, Novo Nordisk A/S, Søborg, Denmark

ARTICLE INFO

Article history:
Received 21 November 2013
Received in revised form 17 January 2014
Accepted 28 January 2014
Available online 4 February 2014

Keywords:
Myeloproliferative neoplasms
Essential thrombocythemia
Polycythemia vera
Myelofibrosis
Chronic kidney disease
Chronic inflammation
Hydroxyurea

ABSTRACT

Background: The progression of kidney function and frequency of chronic kidney disease (CKD) in patients with the Philadelphia-negative myeloproliferative neoplasms (MPN) is unknown, although CKD is linked to increased mortality.

Methods: This longitudinal retrospective study evaluates the estimated glomerular filtration rate (eGFR) in 143 MPN patients over a period of 9 years.

Results: 29% of patients had CKD stage 3 or 4 at time of diagnosis. 20% of patients had a rapid annual loss of eGFR (>3 mL/min/1.73 m²) and eGFR was negatively correlated to monocyte and neutrophil counts.

Conclusion: Kidney impairment might contribute to the increased mortality observed in MPN patients.

© 2014 Elsevier Ltd. All rights reserved.
Previous or Concurrent Autoimmune or Chronic Inflammatory Diseases in MPNs

- Systemic lupus erythematosus
- Progressive systemic sclerosis
- Primary biliary cirrhosis
- Ulcerative colitis, mb. Crohn
- Nephritic syndrome
- Polyarteritis nodosa
- Sjogren syndrome
- Juvenile rheumatoid arthritis
- Psoriasis
- Polymyalgia rheumatica /arteritis temporalis
• **Chronic Inflammation in MPNs – evidence?**
 - Epidemiological?
 - Histopathological?
 - Clinical?
 - Biochemical?
 - Molecular (eg. gene expression profiling)?
• **Perspectives?**
 - Early Intervention at The Time of Diagnosis?
Autoimmunity in Myelofibrosis
Immune-Related Abnormalities

• Antibodies to RBCs (detected in the Coombs test)
• Anti-nuclear and -mitochondrial antibodies (ANA and AMA)
• Rheumatoid factor, lupus-like anti-coagulant
• Low levels of complement
• Increased levels of immune complexes and interleukin-2 soluble receptors (s-IL2R)
Cytokine Profiling Study in Myelofibrosis

Elevated Cytokines

- IL-1, IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-12, IL-13, IL-15
- TNF-alpha
- G-CSF
- IFN-alpha
- IFN-inducible protein 10 (IP-10)
- Macrophage inflammatory protein 1(MIP-1)
- Monokine induced by IFN-gamma (MIG)
- Monocyte chemotactic protein 1 (MCP-1)
- Hepatocyte growth factor (HGF),
- Vascular endothelial growth factor (VEGF)

Elevated C-reactive protein is associated with shortened leukemia-free survival in patients with myelofibrosis

Barbui T et al Leukemia (2013) 27, 2084–2086

Leukemia-free survival by high (> 7 mg/l) and low (< 7 mg/l) levels of hs-CRP (a) and according to the new scoring system (b)
• **Chronic Inflammation in MPNs – evidence?**
 - Epidemiological?
 - Histopathological?
 - Clinical?
 - Biochemical?
 - Molecular (eg. gene expression profiling)?

• **Perspectives?**
 - Early Intervention at The Time of Diagnosis?
The Biological Continuum

Chronic Inflammation – Clonal Evolution – Cancer

IFI27

JAK2 V617F positive disorders:
One mutation, three phenotypes – a 2011 model

Chronic Inflammation
Gene Clusters

- Inflammation
- Immune system
- Platelet alpha granule
- Apoptosis
Oxidative Stress

Reactive Oxygen Species (ROS)

Genomic Instability

Clonal Evolution
MPNs

A Human Inflammation Model?

Reactive Oxygen Species

ROS
Second cancer
Chronic Inflammation
Premature Atherosclerosis

Leukocyte and Platelet Activation
Inflammatory Cytokines

ROS

PV

Chronic Inflammation

TNF-Alpha
IL-6, IL-8
IL-11, HGF

ET

JAK2 46/1 Generator

Switch off

Switch on

Cytokine Storm

TNF-Alpha
IL-6, IL-8
IL-11, HGF

Inflammation Atherosclerosis Second Cancer MDS/ AML

Myelofibrosis

Chronic Inflammation

Chronic Inflammation

Chronic Inflammation

Chronic Inflammation
Review

Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?

Hans Carl Hasselbalch

Department of Hematology, Roskilde Hospital, University of Copenhagen, Køgevej 7-13, Roskilde, Denmark

ARTICLE INFO

Article history:
Received 11 August 2012
Received in revised form 11 August 2012
Accepted 24 October 2012
Available online xxx

Keywords:
Chronic inflammation
Promotor
Mutations
Essential thrombocythemia
Polycythemia vera
Myelofibrosis

ABSTRACT

The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms, in which a stem cell lesion induces an autonomous proliferative advantage. In addition to the JAK2V617 mutation several other mutations have been described. Recently chronic inflammation has been proposed as a trigger and driver of clonal evolution in MPNs. Herein, it is hypothesized that sustained inflammation may elicit the stem cell insult by inducing a state of chronic oxidative stress with elevated levels of reactive oxygen species (ROS) in the bone marrow, thereby creating a high-risk microenvironment for induction of mutations due to the persistent inflammation-induced oxidative damage to DNA in hematopoietic cells. Alterations in the epigenome induced by the chronic inflammatory drive may likely elicit a “epigenetic switch” promoting persistent inflammation. The perspectives of chronic inflammation as the driver of mutagenesis in MPNs is discussed, including early intervention with interferon-alpha2 and potent anti-inflammatory agents (e.g. JAK1-2 inhibitors, histone deacetylase inhibitors, DNA-hypomethylators and statins) to disrupt the self-perpetuating chronic inflammation state and accordingly eliminating a potential trigger of clonal evolution and disease progression with myelofibrotic and leukemic transformation.

© 2011 Elsevier Ltd. All rights reserved.
A role for reactive oxygen species in JAK2V617F myeloproliferative neoplasm progression

C Marty1,2,3, C Lacout1,2,3, N Doin1,2,3, J-P Le Couédic1,2,3, V Ribrag1,2,3, E Solary1,2,3, W Vainchenker1,2,3, J-L Villeval1,2,3 and I Plo1,2,3

Although other mutations may predate the acquisition of the JAK2V617F mutation, the latter is sufficient to drive the disease phenotype observed in BCR-ABL-negative myeloproliferative neoplasms (MPNs). One of the consequences of JAK2V617F is genetic instability that could explain JAK2V617F-mediated MPN progression and heterogeneity. Here, we show that JAK2V617F induces the accumulation of reactive oxygen species (ROS) in the hematopoietic stem cell compartment of a knock-in (KI) mouse model and in patients with JAK2V617F MPNs. JAK2V617F-dependent ROS elevation was partly mediated by an AKT-induced decrease in catalase expression and was accompanied by an increased number of 8-oxo-guanines and DNA double-strand breaks (DSBs). Moreover, there was evidence for a mitotic recombination event in mice resulting in loss of heterozygosity of JAK2V617F. Mice engrafted with 30% of Jak2V617F KI bone marrow (BM) cells developed a polycythemia vera-like disorder. Treatment with the anti-oxidant N-acetylcysteine (NAC) substantially restored blood parameters and reduced damages to DNA. Furthermore, NAC induced a marked decrease in splenomegaly with reduction in the frequency of the JAK2V617F-positive hematopoietic progenitors in BM and spleen. Altogether, overproduction of ROS is a mediator of JAK2V617F-induced DNA damages that promote disease progression. Targeting ROS accumulation might prevent the development of JAK2V617F MPNs.

Leukemia advance online publication, 26 April 2013; doi:10.1038/leu.2013.102

Keywords: myeloproliferative neoplasms; JAK2V617F; reactive oxygen species; N-acetylcysteine; DNA damages; knock-in mouse model
JAK2V617F induces accumulation of ROS
ROS induces DNA-damage in stem cells
DNA-damages induce genomic instability
Genomic instability induces mutations

Oxidative Stress

Reactive Oxygen Species
(ROS)

Fibrosis ?
ROS Mediate Many of TGF-β’s Fibrogenic Effects

A simplistic model of hematopoietic stem cell niches

A simplistic model of hematopoietic stem cell niches
The chicks are flying prematurely (escaping) from the burning nest

Oxidative Stress – ROS Accumulation
Genomic Instability – Mutagenesis - Metastasitis
Neutrophil Granules

- **Mobilization**
- **Metastasis**
- **Myeloid Metaplasia**

Oxidative Stress – ROS Accumulation
Genomic Instability – Mutagenesis - Metastasis
Transcriptional Profiling of Whole Blood Identifies a Unique 5-Gene Signature for Myelofibrosis and Imminent Myelofibrosis Transformation

Hans Carl Hasselbalch1*, Vibe Skov2, Thomas Stauffer Larsen3, Mads Thomassen2, Caroline Hasselbalch Riley4, Morten K. Jensen4, Ole Weis Bjerrum5, Torben A. Kruse2

1 Department of Hematology, Roskilde Hospital, University of Copenhagen, Roskilde, Denmark, 2 Department of Clinical Genetics, Odense University Hospital, Odense, Denmark, 3 Department of Hematology, Odense University Hospital, Odense, Denmark, 4 Department of Hematology L, Herlev Hospital, University of Copenhagen, Herlev, Denmark, 5 Department of Hematology L, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Abstract

Identifying a distinct gene signature for myelofibrosis may yield novel information of the genes, which are responsible for progression of essential thrombocythemia and polycythemia vera towards myelofibrosis. We aimed at identifying a simple gene signature – composed of a few genes - which were selectively and highly deregulated in myelofibrosis patients. Gene expression microarray studies have been performed on whole blood from 69 patients with myeloproliferative neoplasms. Amongst the top-20 of the most upregulated genes in PMF compared to controls, we identified 5 genes (DEFA4, ELA2, OLFM4, CTSG, and AZU1), which were highly significantly deregulated in PMF only. None of these genes were significantly regulated in ET and PV patients. However, hierarchical cluster analysis showed that these genes were also highly expressed in a subset of patients with ET (n = 1) and PV (n = 4) transforming towards myelofibrosis and/or being featured by an aggressive phenotype. We have identified a simple 5-gene signature, which is uniquely and highly significantly deregulated in patients in transitional stages of ET and PV towards myelofibrosis and in patients with PMF only. Some of these genes are considered to be responsible for the derangement of bone marrow stroma in myelofibrosis. Accordingly, this gene signature may reflect key processes in the pathogenesis and pathophysiology of myelofibrosis development.

Editor: Andre van Wijnen, University of Massachusetts Medical, United States of America

Received October 2, 2013; Accepted December 2, 2013; Published January 13, 2014

Copyright: © 2014 Hasselbalch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study has received grants from the The Danish Council for Independent Research | Medical Sciences (http://fim.au/forskning-og-innovation/forskningsgrad/raedtet/dff-sundhed-og-sygdom) The funders had no role in study design, data Collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail hans.hasselbalch@dadlnet.dk
Figure 1. Fold changes for the 5 genes in ET, PV, and PMF compared to control subjects. Patient groups and genes are shown on the x-axis and fold changes on the Y-axis. NS: non-significant; S: significant. All genes FDR<0.05.
doi:10.1371/journal.pone.0085567.g001
Figure 2. Hierarchical Cluster analysis with euclidean distance in ET, PV and PMF patients. Rows in the heat map represent the five genes DEFA4, ELA2, CTSG, OLFM4, and AZU1, and columns represent patients. The color key ranges from green to red representing standardized expression values of −3.0 to 3.0. Green indicates low expression, black intermediate expression, and red high expression. Five major clusters can be identified. Cluster 1 (green, low expression), cluster 2 (green-black, low-intermediate expression), cluster 3 (black-red, intermediate expression), cluster 4 (red-black, intermediate-high expression), and cluster 5 (red, high expression). The dendogram shows the degree of similarity between patients. doi:10.1371/journal.pone.0085567.g002
Hematopoietic niches: a new therapeutic target for PMF?
Summary

• **MPNs – the Biological Continuum ?**
• **Chronic Inflammation in MPNs –evidence ?**
 - Epidemiological ?
 - Histopathological ?
 - Clinical ?
 - Biochemical ?
 - Molecular (eg. gene expression profiling) ?
• **Perspectives ?**
 - Early Intervention at The Time of Diagnosis ?
How To Improve Quality of Life in MPNs?

Inhibit Clonal Evolution and Development of Myelofibrosis

Early Therapeutic Intervention?

Interferon-Alpha2
Statins – JAK1-2 Inhibitor – HDACi?
Stem Cell Wake up Call

IFN-alpha

Myeloproliferative disorders

- BCR-ABL
- JAK2 V617F
- Unknown mutation

Chronic myeloid leukemia

- Chronic phase
- Accelerated phase
- Blast crisis

JAK2-positive thrombocythemia

- Chronic phase
- Accelerated phase

JAK2-positive polycythemia

- Chronic phase

JAK2-negative myeloproliferative disorder

- Chronic phase
- Accelerated phase
- Leukemic transformation

myelofibrosis cytopenias increasing blasts increasing white cells

?
Evolution of JAK2-V617F -Mutation during Treatment with Peg-IFN-α-2a

Sustained Molecular Response in Polycythemia Vera Treated with Interferon Alfa-2b

Figure 1: Bone marrow histomorphology from patient 1 at a) time of diagnosis 1996 and b) just prior to treatment with IFN alfa-2b. Both panels demonstrate classical PV features with hyperplasia and clustering of morphological abnormal megakaryocytes. Panel c) shows the morphologically normal bone marrow from August 2007 (after eight years of treatment with IFN-alfa 2b) with total regression of PV features (Larsen T et al Ann Hematol 2008; 87: 847–850)
Long term molecular responses in a cohort of Danish patients with essential thrombocythemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha

Thomas Stauffer Larsena,\ast, Katrine F. Iversena, Esben Hansenb, Anders Bruun Mathiasenc, Claus Marchera, Mikael Frederiksend, Herdis Larsene, Inge Hellebergf, Caroline Hasselbalch Rileyg, Ole W. Bjerrumc, Dorthe Rønnov-Jessenh, Michael Boe Mølleri, Karin de Strickeri, Hanne Vestergaarda, Hans Carl Hasselbalchb

a Department of Hematology, Odense University Hospital, Denmark
b Department of Hematology, Roskilde Sygehus, Denmark
c Department of Hematology, Rigshospitalet, Denmark
d Department of Internal Medicine, Hematology, Haderslev Hospital, Denmark
e Department of Internal Medicine, Hematology, Viborg Hospital, Denmark
f Department of Hematology, Aalborg Hospital, Denmark
g Department of Hematology, Herlev Hospital, Denmark
h Department of Internal Medicine, Hematology, Vejle, Denmark
i Department of Clinical Pathology and Molecular Biology, Odense University Hospital, Denmark
Fig. 1. Waterfall-plot depicting the change from baseline in JAK2 V617F mutant allele burden in the 102 individual patients with a median follow-up of 42 months (range 12–146 months). For the 4 patients with a 100% increase the bars are modified to fit the 100% y-scale. The patients had a 138% (from 5% to 17%, PV), 200% (from 10% to 30%, PV), 225% (from 12% to 35%, ET) and 240% (from 5% to 17%, ET) increase, respectively.

Cecilie Utke Rank¹, Ole Weis Bjerrum², Thomas Stauffer Larsen³, Lasse Kjær¹, Karin de Stricker⁴, Caroline Hasselbalch Riley⁵, Hans Carl Hasselbalch¹

¹ Department of Hematology, Roskilde Hospital, University of Copenhagen
² Department of Hematology, Rigshospitalet, University of Copenhagen
³ Department of Hematology, Odense University Hospital
⁴ Department of Pathology, Odense University Hospital
⁵ Department of Hematology, Herlev Hospital, University of Copenhagen
Patient 2: Serial Measurements of JAK2V617F during and after discontinuation of interferon-alpha treatment

* Bone marrow samples

rp. IFN mar '99

sep. IFN 1/3-08

rp. IFN 13/8-13
Patient 9: Serial Measurements of JAK2V617F during and after discontinuation of interferon-alpha treatment

![Graph showing the decrease in JAK2V617F allele burden over time](image)

- **sep. IFN 23/9-10**
Defective Tumor Immune Surveillance

Tumor Cell Escape

T-Cell
NK-Cells
T-Cell
Enhanced Tumor Immune Surveillance

Killing of Tumor Cells

T-Cell

NK-Cells

Interferon-Alpha

Interferon-Alpha

Interferon-Alpha
Two Different Scenarios

No Access IFN-alpha2

• "Do no harm"
• Risk stratification

• Normal blood counts
• Cytogenetic remission
• Molecular remission
• Normal bone marrow
• Minimal residual disease

Access IFN-alpha2

• "Do no harm"
• Risk Stratification

• Normal blood counts
• Cytogenetic remission
• Molecular remission
• Normal bone marrow
• Minimal residual disease
Two Different Scenarios

<table>
<thead>
<tr>
<th>No Access IFN-alpha2</th>
<th>Access IFN-alpha2</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP HU</td>
<td>STOP IFN</td>
</tr>
<tr>
<td></td>
<td>Sustained</td>
</tr>
<tr>
<td></td>
<td>Complete HR</td>
</tr>
<tr>
<td></td>
<td>Molecular remission</td>
</tr>
<tr>
<td></td>
<td>Normal bone marrow</td>
</tr>
<tr>
<td></td>
<td>Minimal residual disease</td>
</tr>
</tbody>
</table>

A subset of patients
Two Different Scenarios

<table>
<thead>
<tr>
<th>No Access IFN-alpha2</th>
<th>Access IFN-alpha2</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HU (>10 yrs)</td>
<td>• IFN-alpha2</td>
</tr>
<tr>
<td>• Risk of</td>
<td>• Risk of</td>
</tr>
<tr>
<td>• Skin cancer</td>
<td>• Skin cancer</td>
</tr>
<tr>
<td></td>
<td>• MDS/AML</td>
</tr>
<tr>
<td>• Second cancer</td>
<td>• Second cancer</td>
</tr>
</tbody>
</table>
Rationale for Early Intervention
IFN-alpha2

✓ Major /Complete Molecular Remissions after Long-Term Treatment (> 3 -5 years)
✓ Sustained Molecular Remissions after Discontinuation of IFN-alpha2
✓ Minimal Residual Disease
✓ JAK2V617F ET the Early Phase of PV in a Subset of Patients
✓ “ET” Early Phase of Myelofibrosis in a Subset of Patients
✓ MPNs Associated with an Increased Risk of Second Cancer
✓ IFN-alpha2 Enhancer of ”Tumor Immune Surveillance”
✓ Early Intervention with IFN-alpha2 Decreases the Risk of Second Cancer ?
✓ JAK2V617F Tumor Promoter ?
Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study

Henrik Frederiksen,1,2 Dóra Kőrmendiné Farkas,1 Christian Fynbo Christiansen,1 Hans Carl Hasselbalch,3 and Henrik Toft Sørensen1

1Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; 2Department of Hematology, Odense University Hospital, Odense, Denmark; and 3Department of Hematology, Roskilde Hospital, Denmark

Patients with chronic myeloproliferative neoplasms, including essential thrombocythemia (ET), polycythemia vera (PV), and chronic myeloid leukemia (CML), are at increased risk of new hematologic malignancies, but their risk of nonhematologic malignancies remains unknown. In the present study, we assessed the risk of both types of malignancies after an ET, PV, or CML diagnosis. We linked 2 population-based nationwide registries, the Danish National Registry of Patients, covering all Danish hospitals and the Danish Cancer Registry, and assessed subsequent cancer risk in a cohort of all 7229 patients diagnosed with a chronic myeloproliferative neoplasm during 1977-2008. We compared the incidence of subsequent cancer in this cohort with that expected on the basis of cancer incidence in the general population (standardized incidence ratio). Overall, ET, PV, and CML patients were at increased risk of developing both new hematologic and nonhematologic cancers. The standardized incidence ratio for developing a nonhematologic cancer was 1.2 (95% confidence interval [95% CI]: 1.0-1.4) for patients with ET, 1.4 (95% CI: 1.3-1.5) for patients with PV, and 1.6 (95% CI: 1.3-2.0) for patients with CML. We conclude that patients with chronic myeloproliferative neoplasms are at increased risk of developing a new malignant disease. (Blood. 2011;118(25):6515-6520)
Increased incidence of another cancer in myeloproliferative neoplasms patients at the time of diagnosis

Helna Pettersson¹, Håvar Knutsen², Erik Holmberg³, Björn Andréasson¹,⁴

¹Hematology section, Uddevalla, NU hospital group, Uddevalla, Sweden; ²Hematology section, Ullevål Hospital, Oslo, Norway; ³Regional Oncology Center, Göteborg; ⁴Section of Hematology and Coagulation, Sahlgrenska University Hospital, Göteborg, Sweden

Abstract

Several studies have reported an increased incidence of coexistent cancer in patients with myeloproliferative neoplasms (MPN), and myelosuppressive treatment has been speculated to be one of the causes. In this study, we have concentrated on malignancies diagnosed before the MPN diagnosis to eliminate the possible influence of MPN treatment. The patients were recruited from the Swedish and Norwegian cancer registries. One thousand seven hundred and 45 patients from the Swedish MPN Quality Registry and 468 patients from the Norwegian National Cancer Registry were included in this study covering a 3-yr period. The results show that primary concurrent cancer is higher among patients with MPN compared to the general population. When pooled together, the Swedish and the Norwegian cohort showed increased prevalence of all types of cancer in general compared with the general population, standard prevalence ratio (SPR) of 1.20 (95% CI 1.07–1.34). Significantly high SPRs were reached for skin malignant melanoma [1.89 (95% CI 1.33–2.62)], prostate cancer [1.39 (95% CI 1.11–1.71)], and hematologic cancer [1.49 (95% CI 1.00–2.12)]. In the polycythemia vera group, the risk of having prior malignant melanoma of the skin was significant, with an SPR of 2.20 (95% CI 1.17–3.77). For patients with essential thrombocythemia and primary myelofibrosis, no significant risks were found. Coexisting cancers have a high impact on the treatment strategies of MPN, as it narrows down the treatment options. Chronic inflammation, as a common denominator of MPN with other cancers, can catalyze each other’s existence and progression.

Key words myeloproliferative neoplasm; polycythemia vera; essential thrombocythemia; primary myelofibrosis; cancer

Correspondence Björn Andréasson, Section of Hematology and Coagulation, Sahlgrenska University Hospital, 41380 Göteborg, Sweden. Tel: +46104352100; Fax: +46104357017; e-mail bjorn.andreasson@vgregion.se

Accepted for publication 1 July 2014 doi:10.1111/ejh.13410
Impaired
Tumor Immune Surveillance ?

Chronic Inflammation ?
Immune Deregulation ?
Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis

Vibe Skov¹, Caroline Hasselbalch Riley², Mads Thomassen¹, Thomas Stauffer Larsen³, Morten K. Jensen², Ole Weis Bjerrum⁴, Torben A. Kruse¹ & Hans Carl Hasselbalch⁵

Perspectives:

• Down-regulation of HLA-genes is a ”tumor-escape mechanism” by which tumor cells escape the attack from potent immune cells e.g. cytotoxic T cells and NK-cells.
• Interferon-alpha2 potently upregulate HLA-genes on tumor cells thereby rendering them accessible for tumor killing by IFN-alpha2.
• Early treatment with IFN to enhance tumor cell killing.
Improvement of Tumor Immune Surveillance

Interferon-alpha2

From the Time of Diagnosis
DALIAH

A Danish Study of Low-Dose Interferon-alpha2 versus Hydroxyurea in Ph-Negative Myeloproliferative Cancer

A National Multicenter Study on The Efficacy, Toxicity and QoL

Target
200 Patients
Use Low Dose:
- Pegasys 45 ug x 1 sc/week
- PegIntron 30 ug x 1 sc/week

10-20% side effects
Interferon Intolerability

&

Interferon Resistance
Toxicity – Side Effects - Autoimmunity Response Patterns

• the subgroup of patients with severe side effects (drop out) - a better and more rapid response to IFN?

• The subgroup of patients with autoimmunity during treatment with IFN – a better and more rapid response to IFN?
Prognostic Significance of Autoimmunity during Treatment with Interferon

Combination Therapy

Interferon Alpha2 + JAK Inhibitor in Polycythemia Vera and Myelofibrosis
Case report

Combination therapy with interferon and JAK1-2 inhibitor is feasible: Proof of concept with rapid reduction in JAK2V617F-allele burden in polycythemia vera

M.E. Bjørn a,⁎, K. de Stricker b, L. Kjær a, K. Ellemann c, H.C. Hasselbalch a

a Department of Hematology, Roskilde University Hospital, Køgevej 7-13, 4000 Roskilde, Denmark
b Department of Pathology, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
c Department of Neurology, Roskilde University Hospital, Køgevej 7-13, 4000 Roskilde, Denmark

ARTICLE INFO

Article history:
Received 13 March 2014
Received in revised form 13 May 2014
Accepted 19 May 2014
Available online 1 August 2014

Keywords:
Polycythemia vera
JAK2V617F-allele burden
Combination therapy
Interferon
Ruxolitinib

ABSTRACT

We report a 55 year old woman with post-ET PV for 12 years, who experienced resolution of severe constitutional symptoms within 3 days, a marked reduction in splenomegaly and a rapid decline in the JAK2V617F allele burden during combination therapy with interferon-alpha2a and ruxolitinib. Within 4 weeks the patient achieved complete hematological remission with normalization of peripheral blood counts and within 10 months the JAK2V617F-allele burden was reduced from 90% to 28%. Such a rapid decline in the JAK2V617F allele burden is highly unusual in PV-patients during low-dose IFN-alpha2 monotherapy and this finding warrants a prospective study with combination therapy.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Figure 1. Hemoglobin, leukocyte and platelet levels during combination therapy with Ruxolitinib and Peg-IFN-alpha2a.
Figure 2. JAK2 V617F allele burden over time.
Oxidative stress inhibits IFN-α-induced antiviral gene expression by blocking the JAK–STAT pathway

Danilo Di Bona¹,²,*, Marco Cippitelli³,⁴, Cinzia Fionda³,⁴,†, Calogero Cammà¹,², Anna Licata¹, Angela Santoni³,⁴, Antonio Craxì¹

¹Cattedra e Unità Operativa di Gastroenterologia, Dipartimento Biomedico e di Medicina Specialistica, University of Palermo, Palermo, Italy
²IBIM, Consiglio Nazionale delle Ricerche, Palermo, Italy
³Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University ‘La Sapienza’, Rome, Italy
⁴Regina Elena Cancer Institute, Rome, Italy
Oxidative Stress

Defective Tumor Immune Surveillance

Tumor Cell Escape

Impaired Antioxidative Defence

T-Cell

NK-Cells

T-Cell

T-Cell
Enhanced Tumor Immune Surveillance

Killing of Tumor Cells

Oxidative Stress

T-Cell

NK-Cells

T-Cell

Statins

JAK2-Inhibitor

Interferon-Alpha
JAK1-2 Inhibition + Statins

Quelling the Fire

The Inflamed Bone Marrow

Statins and Anti-inflammatory

• Inhibit leukocyte activation
• Inhibit platelet activation
• Inhibit release of pro-inflammatory cytokines (eg. IL-6, TNF-alfa)

Statins inhibit JAK2V617F-dependent cell growth

Statins enhance JAK2 inhibition
Combination Therapy

Interferon Alpha2 + Ruxolitinib + Statin
HGF: hepatocyte growth factor; IL: interleukin; TNF: tumour necrosis factor
The Fairytale on Interferon-Alpha2 in The Treatment of Polycythemia Vera and Related Neoplasms.

Is the Ugly Duckling becoming the Beautiful Swan only by The Randomized Trial?

The Ugly Duckling. A Fairy Tale by Hans Christian Andersen
The chicks are flying prematurely (escaping) from the burning nest.

ROS
Oxidative Stress
Myelofibrosis with huge splenomegaly
Anemia: bone marrow failure, hemodilution, pooling, sequestration, hyperhemolysis, portal hypertension, bleeding
AML-M5
Combination Therapy Interferon-alpha2 + Ruxolitinib
The Beautiful Swan Becoming Even More Beautiful ?

The Ugly Duckling . A Fairy Tale by Hans Christian Andersen
The Dream Stream Study

Newly Diagnosed PV and Hyperproliferative MF

Randomization

Pegasys Pegasys + Ruxolitinib Ruxolitinib
The Future Looks Bright
Thank you for your attention