

MDAnderson Cancer Center

Making Cancer History®

Evolving Management of Myelofibrosis

Srdan (Serge) Verstovsek M.D., Ph.D. Professor of Medicine Department of Leukemia University of Texas MD Anderson Cancer Center Houston, Texas, USA

Why do we prognosticate? International Prognostic Scoring System (IPSS) in Primary Myelofibrosis

Prognostic factors

- Age > 65 years
- Constitutional symptoms
- Hb < 10 g/dL
- Leukocytes > 25×10^{9} /L
- Blood blasts $\geq 1\%$

Risk groups #factors

Allogeneic SCT in Myelofibrosis

 Consider in younger, higher risk patients whose survival is expected to be <5 years

IPSS high risk	Median survival: ~27 mo
IPSS intermediate-2 risk	Median survival: ~48 mo

- Traditionally limited to patients aged <60 years and those with HLAidentical sibling match
- High transplant related mortality due to acute and chronic GVHD
- Estimated 1-year treatment-related mortality: approximately 20-30%
 Overall survival with alloSCT: approximately 50-70%

BOTTOM LINE: less than 10% of patients undergo SCT

Patients are treated for specific problems, not based on prognosis

Medicines for Anemia

Prednisone
Androgens
EPO
Thalidomide or Lenalidomide
+/- prednisone Medicines for Spleen

Ruxolitinib
Hydroxyurea
Busulfan
2-CDA

•Splenectomy •Splenic Radiation

Medicines for Symptoms

•*Ruxolitinib* •Prednisone

Dynamic IPSS in Primary MF

Table 3. DIF 33 for survival in primary inveloribrosis				
	Value			
Prognostic variable	0	1	2	
Age, y	≤ 65	> 65		
White blood cell count, ×10 ⁹ /L	≤ 25	> 25		
Hemoglobin, g/dL	≥ 10		< 10	
Peripheral blood blast, %	<1	≥1		
Constitutional symptoms, Y/N	Ν	Y		

How accurate is prognostication during the disease course?

Impact Of Ruxolitinib On The Natural History Of Patients With Primary Myelofibrosis

	COMFORT-2 cohort	DIPSS cohort	
Patients	100	350	
Deaths (%)	30 (30%)	258 (86%)	
10- year survival probability	29.3%	9.8%	
(95% CI)	(14.4-45.9)	(6.5-14)	
Logrank test	P=0	.0148	
Hazard ratio (95% CI)	0.61 (0.4-0.91)		

Patients who introduced ruxolitinib at some point during their disease history (COMFORT-2) had a better survival when compared to those who continued standard treatments for the whole follow-up (DIPSS)

Impact Of Ruxolitinib On The Natural History Of Patients With Primary Myelofibrosis

Overall survival of patients by degree of splenomegaly reduction

Development of Anemia Does not Affect Response to Ruxolitinib Treatment

Ruxolitinib Overcomes the Adverse Prognostic Effect of Anemia in Patients With Myelofibrosis

Hemoglobin changes on ruxolitinib treatment do not bear the same prognostic implications as hemoglobin changes that occur as a consequence of MF pathology

Transient hemoglobin changes during ruxolitinib therapy initiation should not lead to premature interruption or discontinuation; dose adjustment may be needed

We need more than one JAK2 inhibitor

Sites: USA and EU

*Cross-over from BAT allowed after progression or assessment of the primary endpoint.

Phase 3 Studies with Momelotinib (JAK inh.) for Myelofibrosis

JAK inhibitor naïve

- Randomized, Double Blind
- Primary endpoint: Spleen Response by MRI at week 24

Previous JAK inhibitor exposure

- Randomized, Open Label
- Primary endpoint: Spleen Response by MRI at week 24

NS018 JAK2 Inh. Results of Phase 1

- Of evaluable patients, 53% (19/36) achieved a ≥50% reduction in spleen size.
- Among evaluable patients who had received prior JAK2 inhibitor treatment, 47% (9/19) achieved a ≥50% splenic size reduction.
- Clinical improvement in hemoglobin was recorded in four patients, and clinical improvement in platelets in one patient.
- Reductions in MF-SAF symptom score were observed for all symptoms by Week 4.
- The Phase 2 portion of the study is ongoing and only includes patients who have received prior JAK2 inhibitor treatment

Optimizing MF Therapy

Potential combination partners with JAK2 inhibitor

Goal is to improve response with JAK2 inh, or bring additional benefits (anemia or bone marrow improvement), if safe (!)

Optimizing MF Therapy

New targets

PRM-151: Recombinant Human Pentraxin-2 (PTX-2)

- PTX-2 (
) is an endogenous regulator of tissue repair
- PTX-2 binds to damaged tissue (
) and monocytes/macrophages
- PTX-2 prevents and reverses fibrosis in pre-clinical models
- PTX-2 levels are low in MF patients
 - Also low in patients with renal, pulmonary and liver fibrosis

<u>Hypothesis</u>: Reduction of bone marrow fibrosis will restore hematopoiesis and improve cytopenias

Baseline PTX-2 Plasma Levels are Lower in Patients with MF: Levels Decline with Increasing Bone Marrow Fibrosis Grade

Reduction in Bone Marrow Fibrosis in 11/25 Patients by central, blinded, adjudicated review

- Reduction in BM fibrosis was associated with normalization of bone marrow architecture
 - Normal erythroid clustering (p=.07)
 - Normal or decreased myeloid:erythroid ratio (p= .02)
 - Fewer paratrabecular megakaryocytes (p=.07)

Number of Patients		Best BM Fibrosis Grade After Baseline			
		Grade 3	Grade 2	Grade 1	Grade 0
BM Fibrosis Grade at Baseline	Grade 3 (N= 15)	7	4	3	1
	Grade 2 (N=8)	0	5	3	0
	Grade 1 (N=2)	0	1	1	0

Patient 101-004: PRM-151 QW

Hemoglobin

Toxicity profile: no safety issues in the study so far

Imetelstat: A Telomerase Inhibitor

imetelstat binds to RNA template preventing maintenance of telomeres

Telomerase enzyme:

- Reverse transcriptase comprised of an RNA component (hTR) and a reverse transcriptase catalytic protein subunit (hTERT)
- Binds to the 3' strand of DNA and adds TTAGGG nucleotide repeats to offset the loss of telomeric DNA occurring with each replication cycle
- Not active in somatic cells; transiently upregulated in normal hematopoietic progenitor cells to support controlled proliferation
- Highly upregulated in malignant progenitor cells, enabling continued and uncontrolled proliferation

Imetelstat:

- Proprietary: 13-mer thio-phosphoramidate oligonucleotide complementary to hTR, with covalently-bound lipid tail to increase cell permeability/tissue distribution
- Long half-life in bone marrow, spleen, liver (estimated human t½ = 41 hr with doses 7.5 – 11.7 mg/kg);
- Potent competitive inhibitor of telomerase: IC50 = 0.5-10 nM (cell-free)
- Target: malignant progenitor cell proliferation

Efficacy Results: Primary Endpoint (Overall Response by IWG-MRT)

	Total (n=33)	
Best Response by IWG-MRT	N (%)	
Overall Response (CR+PR+CI)	12 (36.4%)	→ CR/PR/CI: 36.4%
Complete Remission (CR)*	4 (12.1%)	
Partial Remission (PR)*	3 (9.1%)	CR/PR. 21.2/0
Clinical Improvement (CI) by Anemia	1 (3.0%)	
Clinical Improvement (CI) by Spleen	4 (12.1%)	
Stable Disease (SD)	21 (63.6%)	

- All 4 CR patients achieved reversal of bone marrow fibrosis including 3 with complete molecular response
- 3 CR/PR patients who were transfusion dependent at baseline became transfusion independent
- 3 CR/PR patients with splenomegaly at baseline achieved splenic response

qeron

Imetelstat for Myelofibrosis

Median duration of response was 9 months. Toxicity profile: Agent was on FDA clinical hold for liver toxicity; lowering of blood count significant in 50% of patients

THANK YOU

sverstov@mdanderson.org