Evolving Management of Myelofibrosis

Srdan (Serge) Verstovsek
M.D., Ph.D.
Professor of Medicine
Department of Leukemia
University of Texas
MD Anderson Cancer Center
Houston, Texas, USA
Why do we prognosticate?
International Prognostic Scoring System (IPSS) in Primary Myelofibrosis

Prognostic factors

- Age > 65 years
- Constitutional symptoms
- Hb < 10 g/dL
- Leukocytes > 25 x 10^9/L
- Blood blasts > 1%

Risk groups #factors

- Low 0
- Intermediate-1 1
- Intermediate-2 2
- High > 3

Survival by PMF-PS

Why do we prognosticate?

International Prognostic Scoring System (IPSS) in Primary Myelofibrosis

Risk groups #factors

- Low 0
- Intermediate-1 1
- Intermediate-2 2
- High > 3
Allogeneic SCT in Myelofibrosis

• Consider in younger, higher risk patients whose survival is expected to be <5 years

<table>
<thead>
<tr>
<th>IPSS high risk</th>
<th>Median survival: ~27 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSS intermediate-2 risk</td>
<td>Median survival: ~48 mo</td>
</tr>
</tbody>
</table>

• Traditionally limited to patients aged <60 years and those with HLA-identical sibling match

• High transplant related mortality due to acute and chronic GVHD

• Estimated 1-year treatment-related mortality: approximately 20-30%
 – Overall survival with alloSCT: approximately 50-70%

BOTTOM LINE: less than 10% of patients undergo SCT
Patients are treated for specific problems, not based on prognosis.

Medicines for Anemia
- Prednisone
- Androgens
- EPO
- Thalidomide or Lenalidomide
 +/- prednisone

Medicines for Spleen
- Ruxolitinib
- Hydroxyurea
- Busulfan
- 2-CDA
- Splenectomy
- Splenic Radiation

Medicines for Symptoms
- Ruxolitinib
- Prednisone
Dynamic IPSS in Primary MF

How accurate is prognostication during the disease course?

Table 3. DIPSS for survival in primary myelofibrosis

<table>
<thead>
<tr>
<th>Prognostic variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>≤ 65</td>
</tr>
<tr>
<td>White blood cell count, $\times 10^9$/L</td>
<td>≤ 25</td>
</tr>
<tr>
<td>Hemoglobin, g/dL</td>
<td>≥ 10</td>
</tr>
<tr>
<td>Peripheral blood blast, %</td>
<td>< 1</td>
</tr>
<tr>
<td>Constitutional symptoms, Y/N</td>
<td>N</td>
</tr>
</tbody>
</table>

- 0 points
- 1 or 2 points
- 3 or 4 points
- 5 or 6 points
Impact Of Ruxolitinib On The Natural History Of Patients With Primary Myelofibrosis

<table>
<thead>
<tr>
<th></th>
<th>COMFORT-2 cohort</th>
<th>DIPSS cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>100</td>
<td>350</td>
</tr>
<tr>
<td>Deaths (%)</td>
<td>30 (30%)</td>
<td>258 (86%)</td>
</tr>
<tr>
<td>10- year survival probability</td>
<td>29.3% (14.4-45.9)</td>
<td>9.8% (6.5-14)</td>
</tr>
<tr>
<td>Logrank test</td>
<td></td>
<td>P=0.0148</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.61 (0.4-0.91)</td>
<td></td>
</tr>
</tbody>
</table>

Patients who introduced ruxolitinib at some point during their disease history (COMFORT-2) had a better survival when compared to those who continued standard treatments for the whole follow-up (DIPSS).
Impact Of Ruxolitinib On The Natural History Of Patients With Primary Myelofibrosis

Cumulative Proportion Surviving

Time since diagnosis (years)

cohort = DIPSS
cohort = COMFORT
P=0.0148
Overall survival of patients by degree of splenomegaly reduction

Hazard ratio = 0.22*
95% CI: 0.10–0.51
p-value = 0.0001

- <25% Reduction (n=23)
- ≥25% but <50% Reduction (n=13)
- ≥50% Reduction (n=61)
Development of Anemia Does not Affect Response to Ruxolitinib Treatment
Ruxolitinib Overcomes the Adverse Prognostic Effect of Anemia in Patients With Myelofibrosis

Hemoglobin changes on ruxolitinib treatment do not bear the same prognostic implications as hemoglobin changes that occur as a consequence of MF pathology.

Transient hemoglobin changes during ruxolitinib therapy initiation should not lead to premature interruption or discontinuation; dose adjustment may be needed.
We need more than one JAK2 inhibitor

PACRITINIB (JAK2 Inh.)
Phase 3 MF Trial

Eligibility Criteria
Patients with platelet counts <100,000/µL, prior/current JAK2 therapy allowed

2:1 Randomization*
n = ~270

Pacritinib
Best Available Therapy (BAT)

Primary Endpoint
35% reduction in spleen size and 50% symptom improvement at Week 24

Sites: USA and EU

*Cross-over from BAT allowed after progression or assessment of the primary endpoint.
Phase 3 Studies with Momelotinib (JAK inh.) for Myelofibrosis

JAK inhibitor naïve
- Randomized, Double Blind
- Primary endpoint: Spleen Response by MRI at week 24

Previous JAK inhibitor exposure
- Randomized, Open Label
- Primary endpoint: Spleen Response by MRI at week 24

N = 420
1:1 randomization

Momelotinib

Ruxolitinib

N = 150
2:1 randomization

Momelotinib
N = 100

Best Available Therapy (ruxolitinib not allowed)
N = 50

Day 1

Week 24

Year 5
• Of evaluable patients, 53% (19/36) achieved a ≥50% reduction in spleen size.

• Among evaluable patients who had received prior JAK2 inhibitor treatment, 47% (9/19) achieved a ≥50% splenic size reduction.

• Clinical improvement in hemoglobin was recorded in four patients, and clinical improvement in platelets in one patient.

• Reductions in MF-SAF symptom score were observed for all symptoms by Week 4.

• The Phase 2 portion of the study is ongoing and only includes patients who have received prior JAK2 inhibitor treatment.
Optimizing MF Therapy

Potential combination partners with JAK2 inhibitor

Goal is to improve response with JAK2 inh, or bring additional benefits (anemia or bone marrow improvement), if safe (!)
Optimizing MF Therapy

New targets

- ACE011
- Actin ab
- LOXL2 ab
- JAK1 inh
- PRM151
- LCL161
- Smac mimetic
- Bcl-xL inh
- Hedge-hog inhibitor
- Imetelstat
- Telomerase inh
- IL3R (CD123) ab
- PD-1 inhibitor
PTX-2 is an endogenous regulator of tissue repair.

PTX-2 binds to damaged tissue and monocytes/macrophages.

PTX-2 prevents and reverses fibrosis in pre-clinical models.

PTX-2 levels are low in MF patients, also low in patients with renal, pulmonary and liver fibrosis.

Hypothesis: Reduction of bone marrow fibrosis will restore hematopoiesis and improve cytopenias.
Baseline PTX-2 Plasma Levels are Lower in Patients with MF: Levels Decline with Increasing Bone Marrow Fibrosis Grade

Baseline PTX-2 Plasma Levels (ng/mL)

Baseline MF Bone Marrow Fibrosis Grade*

Age matched, healthy controls

Independent study, Verstovsek et al

*central, blinded review; 2 patients reclassified as Grade 1
Reduction in Bone Marrow Fibrosis in 11/25 Patients by central, blinded, adjudicated review

- **Reduction** in BM fibrosis was associated with normalization of bone marrow architecture
 - Normal erythroid clustering ($p=.07$)
 - Normal or decreased myeloid:erythroid ratio ($p=.02$)
 - Fewer paratrabecular megakaryocytes ($p=.07$)

<table>
<thead>
<tr>
<th>BM Fibrosis Grade at Baseline</th>
<th>Number of Patients</th>
<th>Best BM Fibrosis Grade After Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 3 (N= 15)</td>
<td>Grade 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Grade 2 (N=8)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Grade 1 (N=2)</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Patient 101-004: PRM-151 QW

Screening: MF-3
12 weeks: MF-2
24 weeks: MF-3
36 weeks: MF-1

Hemoglobin

- Transfusions
- Hgb
- Linear (Hgb)

Platelets

- Transfusions
- Platelet
- Linear (Platelet)

Toxicity profile: no safety issues in the study so far
Imetelstat: A Telomerase Inhibitor

Telomerase enzyme:
- Reverse transcriptase comprised of an RNA component (hTR) and a reverse transcriptase catalytic protein subunit (hTERT)
- Binds to the 3’ strand of DNA and adds TTAGGG nucleotide repeats to offset the loss of telomeric DNA occurring with each replication cycle
- Not active in somatic cells; **transiently upregulated in normal hematopoietic progenitor cells to support controlled proliferation**
- Highly upregulated in malignant progenitor cells, enabling continued and uncontrolled proliferation

Imetelstat:
- **Proprietary:** 13-mer thio-phosphoramidate oligonucleotide complementary to hTR, with covalently-bound lipid tail to increase cell permeability/tissue distribution
- **Long half-life** in bone marrow, spleen, liver (estimated human t½ = 41 hr with doses 7.5 – 11.7 mg/kg);
- **Potent competitive inhibitor of telomerase:** IC50 = 0.5-10 nM (cell-free)
- **Target:** malignant progenitor cell proliferation
Efficacy Results: Primary Endpoint (Overall Response by IWG-MRT)

<table>
<thead>
<tr>
<th>Category</th>
<th>Total (n=33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Response by IWG-MRT</td>
<td>N (%)</td>
</tr>
<tr>
<td>Overall Response (CR+PR+CI)</td>
<td>12 (36.4%)</td>
</tr>
<tr>
<td>Complete Remission (CR)*</td>
<td>4 (12.1%)</td>
</tr>
<tr>
<td>Partial Remission (PR)*</td>
<td>3 (9.1%)</td>
</tr>
<tr>
<td>Clinical Improvement (CI) by Anemia</td>
<td>1 (3.0%)</td>
</tr>
<tr>
<td>Clinical Improvement (CI) by Spleen</td>
<td>4 (12.1%)</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>21 (63.6%)</td>
</tr>
</tbody>
</table>

- CR/PR/CI: 36.4%
- CR/PR: 21.2%

- All 4 CR patients achieved reversal of bone marrow fibrosis including 3 with complete molecular response
- 3 CR/PR patients who were transfusion dependent at baseline became transfusion independent
- 3 CR/PR patients with splenomegaly at baseline achieved splenic response

*CR (3 Arm A, 1 Arm B); PR (1 Arm A, 2 Arm B)
Imetelstat for Myelofibrosis

Median duration of response was 9 months.
Toxicity profile: Agent was on FDA clinical hold for liver toxicity; lowering of blood count significant in 50% of patients
THANK YOU

sverstov@mdanderson.org