

JAK2 Inhibitors: where do we stand?

Srdan (Serge) Verstovsek
M.D., Ph.D.
Professor of Medicine
Department of Leukemia
University of Texas
MD Anderson Cancer Center
Houston, Texas, USA

Making Cancer History®

Main Clinical Problems in MF

Traditional Therapeutic Options for MF

Medicines for Anemia

- Prednisone
- Androgens
- ·EPO
- Thalidomide
- +/- prednisone

Medicines for Spleen

- Hydroxyurea
- •Busulfan
- •2-CDA
- Splenectomy
- Splenic Radiation

Medicines for Anemia & Spleen

Lenalidomide

+/- prednisone

Medicines for Symptoms

Prednisone

"BAT"

JAK-STAT Signaling

- A well characterized signaling pathway involved in normal hematopoiesis (blood making), inflammation, and immune function
- Four members of JAK family
 - JAK1, JAK2, JAK3 and Tyk2
 - Promiscuous signaling (!)
- JAK2 specifically mediates cytokine signaling for red blood cells and platelets (its inhibition causes anemia and low platelets)

JAK2V617F in MPN: 2005

- Acquired mutation in a gene
- Results in constitutively active JAK2 tyrosine kinase (always active enzyme)
- Causes disease in mice (PV → MF)
- Present in ~50% of ET and MF patients, ~97% PV

JAK2V617F in MPN: 2013

- Other mutations identified (about 20 so far);
 clonal hyerarchy → "multiclonal" state
- JAK2 mutation is not a cause for the disease presence in humans; just contributor to the disease existence
- JAK-STAT pathway dysregulation, regardless of JAK2 mutational status, is a key pathologic feature of MPNs

JAK2 Inhibitors

- Not selective for mutated JAK2V617F enzyme
- Lowering of platelets and red blood cells is expected side effect due to inhibition of normal JAK2
- Elimination of the disease unlikely
- However: may benefit patient with and without JAK2V617F mutation

JAK inhibitor (Company)	Diseases and studies
CEP701 (Cephalon)	MF: phase II finished and I/II (new formulation) ongoing ET/PV: phase II completed
AZD1480 (AstraZeneca)	MF: phase I finished, development stopped
XL019 (Exelixis)	MF: phase I finished, development stopped
NS-018 (NS Pharma)	MF: phase I ongoing
BMS-911543 (BMS)	MF: phase I ongoing
LY2784544 (Lilly)	ET/PV/MF: phase I finished, phase II ongoing
SB1518 (CTI/S*Bio)	MF: phase I/IIx2 completed, phase III ongoing
CYT387 (YM/Cytopia)	MF: phase I/II QD completed; phase I/II BID completed
SAR302503/TG101348 (Sanofi/Targegen)	MF: phase I/II completed; phase II completed, phase III completed ET/PV: phase II ongoing
INCB018424/Ruxolitinib (Incyte/Novartis)	MF: phase I/II and III completed and approved; phase II (for pts with low platelets) ongoing
	ET/PV: phase II completed; PV: phase III ongoing

Evaluation of JAK2 Inhibitors in MF

Efficacy:

- Splenomegaly
- Quality of life/Performance status
- Anemia

Toxicity:

Blood cell suppression, other?

Benefits of JAK Inhibitor Therapy in MF

Splenomegaly

Splenomegaly in MF Patient Pre-Therapy

Splenomegaly after 2 Months of Therapy

Rapid and Durable Impact on Spleen Size in Patients With and Without JAK2V617F Mutation

Spleen Volume Decrease by MRI

Spleen Volume Response: Ruxolitinib vs. BAT

	Ruxolitinib	BAT
↓ Spleen volume	132 (97%)	35 (56%)
↑ Spleen volume	4 (3%)	28 (44%)

Reduction in MF-Related Symptoms by Spleen Volume Reduction at Week 24

Durability of Spleen Volume Reduction

- 90/155 (58%) had a 35% reduction at any time point during the study
- 64% maintained a ≥35% reduction for at least 2 years

Benefits of JAK Inhibitor Therapy in MF

Quality of life/ Performance status

11/2012

4/2008

Improvement in Symptoms

Duration of Symptom Improvement

Arrows indicate improvement.

Evaluation of JAK2 Inhibitors in MF

Anemia

Hemoglobin levels on JAK inhibitor therapy

In general no significant improvement

Impact on Blood and Bone Marrow

In general:

- High white blood cells and high platelets decrease to normal levels
- Red blood cell count does not significantly improve

Bone marrow fibrosis does not change, stays stable

JAK2 Inhibitor Side Effects from Phase II Studies

	GI	Anemia	Platelets	Neuropathy
Ruxolitinib		X	X	
SAR302503	3 X	X	X	
SB1518	X			
CYT387			X	X

What happens if the therapy with JAK2 inhibitor is interrupted?

Return of the symptoms within 7 days

Serious Adverse Events After Therapy Interruption

Adverse Event	Ruxolitinib (n = 155)	Placebo (n = 151)
Total with interruption, n	49	54
Total SAEs, n (%)	3 (6.1)	3 (5.6)

no report of "withdrawal syndrome"

- Percent of patients that discontinued ruxolitinib due to side effects was 11%
- Percent of patient that discontinued placebo due to side effects was 11%

JAK2 Inhibitors in MF

Can JAK2 inhibitors prolong life of patients with MF?

Overall Survival: ruxolitinib vs. placebo

No. of deaths: Ruxolitinib = 27; Placebo = 41; HR = 0.58 (95% CI: 0.36, 0.95); P = .028

Overall Survival: ruxolitinib vs. BAT

	Ruxolitinib	BAT
No. of Patients	146	73
Events	20 (13.7%)	16 (21.9%)

Suggests a relative reduction in the risk of death with ruxolitinib compared with BAT (HR = 0.51; 95% CI, 0.26-0.99), P = .041

Overall Survival: Ruxolitinib vs. matched historical control

JAK2 Inhibitors for Myelofibrosis

- Not selective for JAK2V617F (patients with and without JAK2 mutation benefit)
- Safety: lowering of blood count (not a cause for stopping therapy), others
- Efficacy:
 - spleen size reduction and significant improvement in quality of life and performance status = better control of MF
 - possible prolongation of life in patients with advanced disease

WHAT IS NEXT: combination trials with JAK2 inhibitors

- To <u>increase</u> benefits seen with JAK2 inhibitors
 (splenomegaly, symptoms) as well as to <u>bring additional</u>
 benefits (anemia, BM fibrosis, clone elimination)
- To <u>reduce</u> unwanted side effects (anemia, thrombocytopenia) but maintain clinical benefits
- To improve stem cell transplant result

Ongoing/Planned Ruxolitinib-based Combinations

- plus Panobinostat (USA: Mt Sinai Hospital NYC)
- plus Lenalidomide (USA: MD Anderson)
- plus hedgehog inhibitor (USA: MD Anderson, others)
- plus peg-Interferon-alpha2a (France)
- plus Everolimus (Italy)
- plus Pomalidomide (Germany)
- plus erythropoietin (Germany)
- plus Azacytidine (USA: MD Anderson)
- plus Decitabine in MPN-related AML (USA: Mt Sinai Hospital

JAK2 Inhibitors as Part of the Transplant Procedure

Clinical study: Feasibility of administering **Ruxolitinib** with reduced intensity conditioning (RIC) allogeneic hematopoietic cell transplantation (**RIC-ASCT**) in MF patients

(Canada, USA, Italy, Germany, UK, Israel)

THANK YOU

sverstov@mdanderson.org