Transplantation for Myelofibrosis

H.Joachim Deeg MD Fred Hutchinson Cancer Research Center & University of Washington, Seattle, WA jdeeg@fhcrc.org

Scottsdale, February 21, 2015

I will include in our discussion:

- Primary Myelofibrosis (PMF)
- MF after Polycythemia vera (PV)
- MF after Essential Thrombocythemia (ET)

Outline

- Why transplant patients with myelofibrosis?
- How safe is transplantation?
- How effective is transplantation?
- Who should be transplanted and when?
- Summary and conclusions

Primary goal: The best treatment for every patient !

Myeloproliferative neoplasms (MPN) are dieseases of blood forming stem cells:

Hence, replacing the abnormal stem cells with healthy stem cells should cure the disease.

Risk Factors (DIPSS)

-Developed for non-transplanted patients-

Survival by DIPSS Category (no transplant)

Passamonti F, et al. Blood. 2010;115:1703

The availability of JAK2 inhibitor(s) is changing the landscape

Survival with JAK2 inhibitor therapy

F

Based on Cervantes F et al. Blood 2013;122:4047-4053

.....With some Financial Toxicity.....

Based on Cervantes F et al. Blood 2013;122:4047-4053

These findings are impacting transplant decisions and modifying transplant strategies Not included in current classifications:

- Severity of marrow fibrosis (and fibrosis in other organs)
- Spleen size (portal hypertension)
- Duration of the disease
- DNA mutations

The liver in myelofibrosis: Hepatic sinusoidal fibrosis caused by EMH

H = hepatocytes. Note extensive EMH and collagen deposition (blue stain) in sinusoids.

Fibrosis and Hematopoiesis in the Lung

Could those factors be important for *transplantation*?

- Severity of marrow fibrosis (and fibrosis in other organs) ► Non-relapse mortality
- Spleen size Delayed engraftment; difficult transfusion support
- Duration of the disease More comorbidities (medical problems developing over time)
- Mutations > ?

Results with Transplantation

Patient and Disease Characteristics

No. of patients	170
Age (ys) range (median)	12.1–78.9 (51.5)
Months from diagnosis to HCT (ms), range (median)	2-314 (15)
Type of myelofibrosis,#	
Primary /post-ET/-post-PV	102 / 46/22
JAK2 mutation, #	
yes/no	43/51
Unknown	76

Disease Characteristics (#/%)

- Splenectomy¹
 - No Yes
- DIPSS Score
- Low 21
- Intermediate-1
- Intermediate-2
- High

136 (80) 31 (18) 21 (12)

- 48 (28)
- 50 (30)
- 51 (30)

1 = Data missing in 3

Transplant Characteristics

- Related Donor N= 83 (50%)
- Unrelated Donor N= 84 (50%)
- Source of Stem Cells
- Bone Marrow N= 45 (26%)
 Peripheral Blood N=125 (74%)

Survival after Transplantation

Non-Relapse Mortality by DIPSS

Scott B L et al. Blood 2012;119:2657-2664

Rezvani, et al, BBMT 2013

Survival by disease stage

H.J.Deeg et al

Overall Survival by Age

Kröger et al, Blood, 114:5264, 2009

Survival without and with Transplantation (by DIPSS)

DIPPS Risk	Survival (median; years)	
	No Transplant (at reporting)	Transplant (med F/U 5.9)
Low	Not reached	Not reached
Intermediate 1	14.2	Not reached
Intermediate 2	4	7
High	1.5	2.5

Osteosclerosis: Regression after *high dose conditioning* and HCT (H&E; x250)

Problems

• GVHD

- Organ toxicity
- (Relapse)

Decision Tree

Summary

- HCT offers effective, curative therapy for patients with MF
 - Follow-up extending beyond 20 years
 - Few relapses
- Safety has improved
 - Decreasing NRM
- Donors are available for most patients
- HCT for MF is appropriate for many patients with advanced MF and for select patients with early stage disease

Thank you

- Ted Gooley
- Barry Storer
- Bart Scott
- Keith Loeb
- And, of course, all our patients