PV Treatment in 2017: ls it curable?

Richard T. Silver, M.D.
Professor of Medicine
Division of Hematology/Medical Oncology
Weill Cornell Medicine
New York, New York

10th Joyce Niblack Memorial Conference on Myeloproliferative Neoplasms
Scottsdale, AZ
February 25-26

Outline

- What are we treating?
 - WHO Criteria 2016
 - Distinguishing between PV and JAK2(+) ET
- Treatment
 - Phlebotomy
 - Hydroxyurea
 - Interferon
 - Ruxolitinib
- Is PV curable?

WHO Criteria 2016

Major Criteria:

1. Presence of JAK2 mutation(s)

2. $\sqrt{\frac{1}{2}}$ Hb > 16.5 g/dl $\sqrt{\frac{1}{2}}$ Hb > 16 g/dl or

 \bigcirc Hct > 49% \bigcirc Hct > 48% or

Increased red cell volume > 125%

3. Marrow biopsy hypercellular for age with trilineage hyperplasia and megarkaryocytic variability in size

Minor Criterion (in the case of JAK2 negativity):

Subnormal serum EPO level

Two main points regarding diagnosis of PV:

A single hematocrit or hemoglobin value is not a substitute for measuring red cell mass!!

EPO Levels may be normal (~15 %).

Hematocrit ranges in JAK2(+) ET and PV patients

Potential error when using hematocrit to distinguish JAK2+ ET and PV.

Bone Marrow Examination is Helpful

Outline

- What are we treating?
 - WHO Criteria 2016
 - Distinguishing between PV and JAK2(+) ET
- Treatment
 - Phlebotomy
 - Hydroxyurea
 - Interferon
 - Ruxolitinib
- Is PV curable?

Phlebotomy

All agree must phlebotomize patients

However, must adjust for gender difference

•Men: $Hct \le 45\%$ (RBC = $5.0x10^6$ /mm)

•Women: Hct \leq 42% (RBC = 4.5x10⁶ /mm)

Phlebotomy: Important Form of Treatment

Based on Chien S, Gallik S. American Physiological Society 1984; 217-249

Pearson TC, Wetherley-Mein G. Lancet 1978;1219-1222

Initial Treatment

Must assess phlebotomy

requirements first.

Phlebotomy Requirements During the Year Prior to rIFNα: All Patients (Cornell Experience)

Quartile	# Patients	# PHL during the year prior to rIFNα	Median	Mean
1	9	1-4	3	2.8
2	9	5-7	5.5	5.7
3	8	8-12	9.5	9.6
4	8	12-25	15	16
Totals	34	Range: 1-25	7	8

Myth of Phlebotomy Only: Phlebotomy Unacceptable as Sole Treatment

1. Poor clinical tolerance

- 2. Frequency of vascular complications
- 3. Development of iron-deficiency anemia
- 4. Risk of early progression to myelofibrosis (?)
- 5. Cardiac toxicity

The hematocrit value in polycythemia vera: caveat utilitor

With iron deficiency anemia, there is a poor correlation (right graph) between derived hematocrit and red cell count.

Effect of MCV on Derived HCT

Remember, simple arithmetic is still important!

Phlebotomy: low MCV

Chemotherapy: high MCV

RBC	X	MCV	=	HCT
5.0	X	90	=	45
5.0	X	110	=	55
5.0	X	75	=	37.5
6.4	X	70	=	45

Dangers of hematocrit values ignoring RBC

Spivak, Jerry L., and Richard T. Silver. "The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: an alternative proposal." Blood 112.2 (2008): 231-239.

Myelosupression is an important component of PV treatment PVSG

- 1. Control peripheral RBC, platelets, WBC
- 2. Diminish symptomatic splenomegaly
- 3. Relieves pruritis
- 4. Adjunct to phlebotomy

Hydroxyurea

 Worldwide, the majority of hematologists still use hydroxyurea (HU) as a cytoreductive agent

Predisposition to cancers and leukemia?

Comparative incidence of thrombosis (PVSG study)

All events, first 378 weeks of study (7.3 years)

Treatment	Total patients	No. events	%
Hydrea + phlebotomy	51	7	13.7
Phlebotomy-only	134	51	38.1

Toxicities of hydroxyurea

Toxicities of hydroxyurea

Specific Activities of interferon-alpha (rIFN-α) of interest in PV

- rIFN specifically affects JAK2(+) stem cells in mice (Mullaly, et al. ASH, 2013)
- Affects intracellular signaling related to JAK-STAT and other pathways
- Inhibits early red cell and megakaryocyte development
- Inhibits blood vessel formation

Treatment of PV with low-dose rIFNa (N= 55)

Start

{rIFNα-2b {Peg rifn α-2b

1 million unts 3 X wk

{Peg rifn α -2b 45 mgm/wk

According to the PVSG criteria (HCT \leq 45%, no phlebotomy requirements, and platelets \leq 600,000/ μ L):

- All 55 patients had clinical responses
- No thrombohemorrhagic episodes
- Previous treatment with HU in 30%

Change in Spleen Size

1 year after rIFN-α

2 years after rIFN- α

- 27/30 (90%) patients with initial splenomegaly showed greater than 50 % reduction in spleen size whether or not they received prior HU
- In 23 (76.7%) patients, spleen became non-palpable

Effect of interferon treatment on spleen size

BEFORE rIFN RX

Two years AFTER

Progression-Free Survival from Thrombohemorrhagic Events, 55 PV Patients

All 55 patients had CR or PR

Limitations of rIFN therapy

Side effects are mainly dose dependent; perhaps less with single isomer interferon, RO-PEG.

Typically transient flu-like symptoms that occur shortly after injections

Headache

Myalgia

Back/joint pain

Fever Chills

Mild skin reaction

Fatigue

Less common (resolve upon rIFN discontinuation or decrease in dose):

Chronic fatigue

Depression

Musculoskeletal pain

Alopecia

GI toxicity

Confusion (elderly patients)

Liver toxicity

Cytopenias

Autoimmune disease

Pulmonary, cardiac, or renal

dysfunction

Neurological (gait disturbance,

frontal lobe dysfuntion, bilateral

lower extremity neuritis

Ropeginterferon alpha 2b (RoPEGα2b)

- 51 patients, treated every 2 weeks
 - •33% treated with hydroxyurea at time of screening
 - Prior to therapy, 22% of patients suffered major cardiovascular events

• Response rate: 90%

•CR: 47%

•PR: 43%

•CMR: 31%

Significant Decreases in JAK2 Allele Burden After Peg-rIFNα

(a quantitative number from 0 - 100%)

First reported by Kiladjian, then Quintas-Cardama, Verstovsek

Not by Silver and Kuriakose

May be related to dose, duration, degree of toxicity

Therapeutic Conundrum

Is it preferable to maintain complete hematologic response with lowest interferon dose rather than to aim for JAK2 negativity?

Interferon is effective in treating the fibrosis that occurs in polycythemia vera in the absence of leukoerythroblastosis.

This provided the basis for its use in treating "early" myelofibrosis.

2/11/2009: H&E section (20X): increased fibrosis and increased atypical megakaryocytes

2/11/2009: 20X reticulin special stain: Markedly increased fibrosis – diffuse thick reticulin fibers

7/27/2011: H&E, 20X: Megakaryocytes form focal clusters

7/27/2011: 20X, reticulin special stain: mild increase in fibers (1+)

Response to treatment in primary, post-PV, and post-ET myelofibrosis: all patients (N=30)

Response	No
CR	2
PR	9
CI	4
Stable	7
PD	4
Death	4

73% improved or remained stable, with 50% achieving CI or better

Ruxolitinib in PV N=322

Patients: inadequate response/unacceptable toxicity after HU treatment

Results: 21% of patients in ruxolitinib group achieved end point of Hct control, 35% reduction in spleen size at 32 weeks

Rux + other drugs (rIFN, azacytadine) undergoing evaluation

Outline

- What are we treating?
 - WHO Criteria 2016
 - Distinguishing between PV and JAK2(+) ET
- Treatment
 - Phlebotomy
 - Hydroxyurea
 - Interferon
 - Ruxolitinib
- Is PV curable?

Basis for Early Treatment

- 1) PV, JAK2^{V617} HSC clone is small
- 2) Minimum JAK2 V617F tumor burden preferentially sensitive to rIFN α
- 3) Activate cell cycle within HSC compartment

Preferential depletion of JAK2^{V617F} HS

Model for Early Treatment of MPNs with rIFN

Early

rIFN effective

Advanced

rIFN less effective

Sclerotic

rIFN not effective

Myeloproliferative Neoplasms (MPNs)

Mutation	PV (%)	ET (%)	MF (%)	post- MPN AML (%)
JAK2 ^{V617F}	95-99	50-70	40-50	
JAK2 exon 12	Rare	None	None	
MPL exon 10	Rare	4	11	
TET2	15	4-11	19	26
CBL	Rare	Rare	6	
IDH	1.9	0.8	4.2	21.6
IKZF1	Rare	Rare	Rare	21
EZH2	3	None	13	
<i>ASXL1</i> exon 12	<7	<7	19-40	19

PV: Polycythemia Vera, ET: Essential Thrombocythemia, MF:

Myelofibrosis, AML: Acute Myeloid Leukemia

Vainchenker W, et al. Blood 118:1723-1735, 2011

Change in Biopsy and JAK2V617 Value

No apparent correlation between

hematologic response, complete

molecular response, and change in

cellularity or fibrosis.

Is PV Curable?

"Absolute" cure

Not now

"Biologic" cure

Possible

Hematologic/molecular remission

Most likely

