2017 Update on

MDS

MPN

Overlap Neoplasms

JASON GOTLIB, MD, MS
Professor Of Medicine (Hematology)
Stanford University School Of Medicine
JASON.GOTLIB@STANFORD.EDU

MAYO MPN PATIENT CONFERENCE: FEBRUARY 26, 2017
2016 WHO Classification Scheme for Myeloid Neoplasms

Acute
- Acute Myeloid Leukemia
 - Myelodysplastic Syndromes
 - MDS/MPN
 - Myeloproliferative Neoplasms
 - Chronic Myeloid Leukemia
 - Polycythemia Vera
 - Essential Thrombocythemia
 - Primary Myelofibrosis
 - Chronic Neutrophilic Leukemia
 - Chronic Eosinophilic Leukemia, NOS
 - Mastocytosis
 - MPNs, unclassifiable
 - MDS/MPN, unclassifiable
 - MDS/MPN with ring sideroblasts and thrombocytosis
 - (MDS/MPN-RS-T)
 - MDS/MPN, unclassifiable
 - (MDS/MPN-U)
 - Atypical Chronic Myeloid Leukemia (aCML)
 - Juvenile Myelomonocytic Leukemia (JMML)
 - MDS/MPN
 - Myelodysplastic Syndromes
 - MDS/MPN
 - Myeloproliferative Neoplasms
 - Chronic Myeloid Leukemia
 - Polycythemia Vera
 - Essential Thrombocythemia
 - Primary Myelofibrosis
 - Chronic Neutrophilic Leukemia
 - Chronic Eosinophilic Leukemia, NOS
 - Mastocytosis
 - MPNs, unclassifiable
 - MDS/MPN, unclassifiable
 - MDS/MPN with ring sideroblasts and thrombocytosis
 - (MDS/MPN-RS-T)
 - MDS/MPN, unclassifiable
 - (MDS/MPN-U)

Chronic
- Acute Myeloid Leukemia
 - Myelodysplastic Syndromes
 - MDS/MPN
 - Myeloproliferative Neoplasms
 - Chronic Myeloid Leukemia
 - Polycythemia Vera
 - Essential Thrombocythemia
 - Primary Myelofibrosis
 - Chronic Neutrophilic Leukemia
 - Chronic Eosinophilic Leukemia, NOS
 - Mastocytosis
 - MPNs, unclassifiable
 - MDS/MPN, unclassifiable
 - MDS/MPN with ring sideroblasts and thrombocytosis
 - (MDS/MPN-RS-T)
 - MDS/MPN, unclassifiable
 - (MDS/MPN-U)

Myeloid or lymphoid neoplasms associated with eosinophilia and abnormalities of PDGFRA, PDGFRB, FGFR1, or PCM1-JAK2
Features of MDS and MPN

- **MDS**
 - Ineffective hematopoiesis
 - Low blood counts (anemia most common)
 - Abnormal blood cell morphology (dysplasia)

- **MPN**
 - "Super"-effective hematopoiesis
 - Increased blood counts
 - Dysplasia absent
MDS / MPN:
An Overlap Neoplasm

Dysplasia
Ineffective hematopoiesis

Proliferation
Effective hematopoiesis

MDS
RCUD
RARS
RCMD
RAEB
Del (5q)
MDS-U

MDS/MPN
CMML
JMML
aCML
MDS/MPN-RS-T
MDS/MPN-U

MPN
PV
ET
MF
CML
CEL
CNL
MPN-U

Effective hematopoiesis
Ineffective hematopoiesis

RCMD
RAEB
MDS-U
Some Things Shouldn’t Overlap
2016 World Health Organization Classification of MDS

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Blood</th>
<th>Bone marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS with single lineage dysplasia (MDS-SLD)³</td>
<td>Single or bicytopenia</td>
<td>Dysplasia in ≥10% of one cell line, <5% blasts</td>
</tr>
<tr>
<td>MDS with ring sideroblasts (MDS-RS)</td>
<td>Anemia, no blasts</td>
<td>≥15% of erythroid precursors wiring sideroblasts, or ≥5% ring sideroblasts if SF3B1 mutation present</td>
</tr>
<tr>
<td>MDS with multilineage dysplasia (MDS-MLD)</td>
<td>Cytopenia(s), <1 x 10⁹/L monocytes</td>
<td>Dysplasia in ≥10% of cells in ≥2 hematopoietic lineages, ± 15% ring sideroblasts, <5% blasts</td>
</tr>
<tr>
<td>MDS with excess blasts-1 (MDS-EB-1)</td>
<td>Cytopenia(s), ≤2%–4% blasts, <1 x 10⁹/L monocytes</td>
<td>Unilineage or multilineage dysplasia, 5%–9% blasts, no Auer rods</td>
</tr>
<tr>
<td>MDS with excess blasts-2 (MDS-EB-2)</td>
<td>Cytopenia(s), 5%–19% blasts, <1 x 10⁹/L monocytes</td>
<td>Unilineage or multilineage dysplasia, 10%–19% blasts, ± Auer rods</td>
</tr>
<tr>
<td>MDS, unclassifiable (MDS-U)</td>
<td>Cytopenias, ±1% blasts on at least 2 occasions</td>
<td>Unilineage dysplasia or no dysplasia but characteristic MDS cytogenetics, <5% blasts</td>
</tr>
<tr>
<td>MDS with isolated del(5q)</td>
<td>Anemia, platelets normal or increased</td>
<td>Unilineage erythroid dysplasia, isolated del(5q), <5% blasts</td>
</tr>
<tr>
<td>Refractory cytopenia of childhood</td>
<td>Cytopenias, <2% blasts</td>
<td>Dysplasia in 1–3 lineages, <5% blasts</td>
</tr>
<tr>
<td>MDS with excess blasts in transformation (MDS-EB-T)²</td>
<td>Cytopenias, 5%–19% blasts</td>
<td>Multilineage dysplasia, 20%–29% blasts, ± Auer rods</td>
</tr>
</tbody>
</table>
MDS: Revised International Prognostic Scoring System (IPSS-R)

calculate risk score

cytogenetic risk group

- very good
- good
- intermediate
- poor
- very poor

- del(11q), -Y
- normal, del(20), del(5q) alone or with other anomaly, del(12p)
- +8, del(7q), i(17q), +19, +21, any single or double abnormality not listed,
two or more independent clones
der(3q), -7, double with del(7q), complex with 3 abnormalities
complex with > 3 abnormalities

Bone marrow blast %

- ≤ 2%
- > 2% - < 5%
- 5% - 10%
- > 10%

Hemoglobin (g/dL)

- ≥ 10
- 8 - < 10
- < 8

Platelet count (x 10^9/L)

- ≥ 100
- 50 - < 100
- < 50

Absolute neutrophil count (x 10^9/L)

- ≥ 0.8
- < 0.8

assign IPSS-R risk group

<table>
<thead>
<tr>
<th>total score</th>
<th>% of patients</th>
<th>median survival, years</th>
<th>time to 25% with AML, years</th>
<th>IPSS-R risk group</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1.5</td>
<td>19%</td>
<td>8.8</td>
<td>not reached</td>
<td>very low</td>
</tr>
<tr>
<td>> 1.5 - 3</td>
<td>38%</td>
<td>5.3</td>
<td>10.8</td>
<td>low</td>
</tr>
<tr>
<td>> 3 - 4.5</td>
<td>20%</td>
<td>3</td>
<td>3.2</td>
<td>intermediate</td>
</tr>
<tr>
<td>> 4.5 - 6</td>
<td>13%</td>
<td>1.6</td>
<td>1.4</td>
<td>high</td>
</tr>
</tbody>
</table>

Overall survival, years

Patients, %

Time to AML evolution, years

Patients, %
2016 World Health Organization Classification of MDS/MPN

<table>
<thead>
<tr>
<th></th>
<th>Blood</th>
<th>Marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMML-0</td>
<td>>1000 monocytes/ul <2% blasts</td>
<td>Dysplasia in >1 cell line, <5% blasts</td>
</tr>
<tr>
<td>CMML-1</td>
<td>>1000 monocytes/ul 2-4% blasts</td>
<td>Dysplasia in >1 cell line, 5-9% blasts</td>
</tr>
</tbody>
</table>
What is ‘Dysplasia’?
Red Blood Cell (Erythroid) Dysplasia (Dyserythropoiesis)

<table>
<thead>
<tr>
<th>Blood</th>
<th>Marrow iron stain</th>
<th>Red blood cell precursors in the marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-ovalocytes</td>
<td>Ring sideroblasts</td>
<td></td>
</tr>
</tbody>
</table>

![Blood](image1)

![Marrow iron stain](image2)

![Red blood cell precursors in the marrow](image3)
White Blood cell dysplasia (Dysgranulopoiesis)

- Hypogranularity
- Hypolobation
- Hyperlobation
- Pseudo-Pelger Huet cells

![Normal neutrophil]

![Hyperlobation]

![Pseudo-pelger Huet; hypolobation]

![Hypogranularity]
Megakaryocyte/platelet dysplasia (Dysmegakaryopoiesis)

- Micro/dwarf megakaryocytes
- Hypolobation; separate nuclear lobes
- Platelets - giant, bizarre, hypogranular

- Large, hypogranular platelets
- Hypolobated megakaryocyte
- Dwarf megakaryocytes
Monocytes in CMML

Peripheral Blood

Bone Marrow Aspirate
Mutations in MDS/MPN
How Certain Mutations May ‘Tip the Scales’ Toward MPN vs. MDS

Vainchenker Kralovics, *Blood*, 2017
Mutational Landscape of MDS/MPN

- **CMML**
 - $TET2$, $SRSF2$, $ASXL1$, $RUNX1$, $JAK2$
 - $N/K - RAS$

- **Atypical CML**
 - $SETBP1$, $JAK2$, $N/K - RAS$, $ASXL1$, $CSF3R$

- **JMML**
 - RAS pathway: $PTPN11$, $N/K - RAS$, CBL, $NF1$

- **MDS/MPN - RS**
 - $SF3B1$, $JAK2$, MPL

- **Mughal et al, Haematologica, 2015**
MDS/MPN-RS-T (RARS-T): Mutational Pathogenesis

Somatic mutation of *SF3B1* determining mitochondrial iron overload and ineffective erythropoiesis

Somatic mutation of *JAK2* or *MPL* determining gain of signaling and thrombocytosis

Normal hematopoietic cell → Ring sideroblasts and ineffective erythropoiesis (myelodysplastic features of RARS) → Ring sideroblasts and thrombocytosis (myelodysplastic & myeloproliferative features of RARS-T)

From Cazzola et al, Hematology Am Soc Hematol Educ Program, 2011
Prognosis in MDS/MPN
Prognostic Factors in CMML

<table>
<thead>
<tr>
<th>Factor</th>
<th>Outcome and hazard ratio (HR) (P value)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM blasts ≥ 10%</td>
<td>Overall survival, HR 1.8 (P < .0001)</td>
<td>This parameter separates CMML-1 (BM blasts < 10%) from CMML-2 (BM blasts 10%-19%).</td>
</tr>
<tr>
<td>WBC count ≥ 13 × 10⁹/L</td>
<td>Overall survival, HR 2.6 (P < .0001) and progression to AML, HR 2.9 (P < .0001)</td>
<td>This parameter separates myelodysplastic-like CMML (WBC < 13 × 10⁹/L) from myeloproliferative-like CMML (WBC ≥ 13 × 10⁹/L).</td>
</tr>
<tr>
<td>Hemoglobin level < 10 g/dL</td>
<td>Overall survival, HR 1.5 (P < .0001)</td>
<td>Severe anemia may reflect clonally advanced myeloid neoplasm.</td>
</tr>
<tr>
<td>CMML-specific cytogenetic risk†</td>
<td>Overall survival, HR 1.7 (P < .0001)</td>
<td>Abnormalities of chromosome 7 and complex karyotype represent negative prognostic factors in myeloid neoplasms.</td>
</tr>
<tr>
<td>Platelet count < 100 × 10⁹/L</td>
<td>Overall survival, HR 2.1 (P < .0001)</td>
<td>Thrombocytopenia may reflect clonally advanced myeloid neoplasm.</td>
</tr>
</tbody>
</table>

CMML Prognostic Model: Bone Marrow Blast % and WBC Count

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Overall Survival (Months) n=386</th>
<th>Overall Survival (Months) CMML/MDS n=204</th>
<th>Overall Survival (Months) CMML/MPN n=182</th>
<th>P-value</th>
<th>AML Progression at 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMML-0</td>
<td>31</td>
<td>48</td>
<td>17</td>
<td>.03</td>
<td>7%</td>
</tr>
<tr>
<td><5% blasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMML-I</td>
<td>19</td>
<td>29</td>
<td>15</td>
<td>.008</td>
<td>18%</td>
</tr>
<tr>
<td>5-9% blasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMML-2</td>
<td>13</td>
<td>17</td>
<td>10</td>
<td>.09</td>
<td>36%</td>
</tr>
<tr>
<td>10-19% blasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*WBC ≤ vs >13,000 (CMML/MDS vs CMML/MPN)

Schuler et al, Leuk Res 2015
CMML Prognostic Scoring System

Graphs E and F

- **Graph E** shows survival curves for different risk groups over time.
- **Graph F** also shows survival curves, with different risk groups indicated.

Legend

- **Absence**
 - Leucocytosis (>15)
 - Age (>65)
 - Anemia
 - Thrombocytopenia (<100)
 - ASXL1 mutation

- **Presence**
 - Leucocytosis (>15)
 - Age (>65)
 - Anemia
 - Thrombocytopenia (<100)
 - ASXL1 mutation

Scoring System

- Low < 4
- Intermediate 4-8
- High >8

SETBP1 Mutation in Atypical CML

- **WBC (p=0.008)**
- **Hb (p=0.44)**
- **Platelets (p=0.16)**

SETBP1- = 77 months
SETBP1+ = 22 months

p=0.01, HR=2.27

Piazza R. et al, Nat Genetics 2013
Atypical CML: Disease Course

- The largest series of WHO-defined aCML: 55 cases from an Italian cohort.¹

- **Overall median survival**: 25 months compared with survivals ranging from 14 to 30 months from 3 smaller studies.²-⁴

- **Transformation to AML** occurred in 22 patients (40%), with a median time from diagnosis of 18 months in the Italian study.¹

- **Predictors of shorter survival**: older age (>65 years), female gender, WBC count (>50x10⁹/L), and presence of immature circulating cells.¹

¹ Breccia et al, Haematologica, 2006
² Kurzrock et al, J Clin Oncol, 2001
³ Martiat et al, Blood, 1991
⁴ Hernandez et al, Ann Oncol, 2000
Clinical Management
Goals of Therapy in MDS/MPN

- Cure
- Reduction of symptoms / splenomegaly
- Improvement of blood counts
- Cytogenetic / molecular remission
- Avoidance of disease progression / AML
Common Clinical Issues in MDS/MPN

MPN

- WBC count (leukocytosis)
- Platelet count (thrombocytosis)

MDS

- Red blood cell count (anemia)

Progression to AML
A 68 year-old man presents with a 6-month history of progressive fatigue. His CBC shows the following:

- White blood cell count: 5,800/ul (normal: 4,000-11,000/ul)
- Hemoglobin/hematocrit: 8.4 g/dL / 27% (normal ~ 15 g/dL; 45%)
- Platelets: 620,000/ul (normal: 150,000-400,000/ul)

A peripheral blood smear is reviewed and a bone marrow biopsy is performed.
Case (continued)

Peripheral blood:
- Increased platelets & dysplastic neutrophil

BM aspirate:
- Increased clustered megas
- Dysplastic erythroids
- Ring sideroblasts

Cytogenetics: normal
Myeloid mutation panel: **SF3B1 & JAK2 V617F**

Diagnosis: MDS/MPN-RS-T

From Cazzola et al, Hematology Am Soc Hematol Educ Program, 2011
Conventional Medications for MDS/MPN

To improve anemia
- EPO +/- G-CSF
- Lenalidomide for intermediate- to high-risk disease and/or concern for evolution to AML
- Hypomethylating agents: Azacitidine or decitabine
- Hematopoietic stem cell transplantation

Supportive Care
- RBC and platelet transfusions
- Antibiotics
- Iron chelation

To control leukocytosis, thrombocytosis, and splenomegaly
- Hydroxyurea
- PEG-Interferon-a
- Anagrelide
Summary of Phase I/II Trials of Hypomethylating Therapy in CMML

- **Overall response rate:** 25-70% (usually ~30-40%)
- **Complete remission rate:** 10-58%
- **Overall Survival (OS):** 12-37 months

Prognostic factors for OS in pts treated with azacitidine

- **Worse OS:** BM blasts >10% and WBC >13 x 10^9/L
- **Better OS:** Absolute monocyte count <10 x 10^9/L and PB blasts <5%

2 Ades *et al*, *Leuk Res*, 2013
3 Fianchi, *et al*, *Leuk Lymphoma*, 2013
Transplantation in CMML

- No randomized trials
- Increasing use of reduced intensity conditioning
 - Other donor sources: haploidentical; double umbilical cord units

FHCRC (n=85)¹
- 10-yr overall and relapse-free survival: 40% an 38%, respectively
- Increasing age, higher SCT co-morbidity index, and poor-risk cytogenetics were associated with increased mortality and reduced relapse-free survival

EBMT (n=513; 95 pts with sAML)²
- 4-year overall and relapse-free survival: 33% and 27%, respectively
- In multivariate analysis, the only significant prognostic factor for survival was the presence of a complete remission at time of transplantation

¹Eissa H et al, Biol Blood Bone Marrow Transplant, 2011
²Symeonidis et al, Br J Haematol, 2015
Targeted Therapy Considerations

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Therapy</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAK2 V617F</td>
<td>JAK inhibitor</td>
<td>Ruxolitinib</td>
</tr>
<tr>
<td>CSF3R T618I</td>
<td>JAK inhibitor</td>
<td>Ruxolitinib</td>
</tr>
<tr>
<td>RAS pathway (e.g. PTPN11, RAS, CBL, NF1)</td>
<td>MEK inhibitor</td>
<td>Trametinib</td>
</tr>
<tr>
<td>SF3B1</td>
<td>TGF-B ligand trap</td>
<td>Luspatercept</td>
</tr>
<tr>
<td>Other splicing gene mutations</td>
<td>Splicing modulator</td>
<td>H3B-8800</td>
</tr>
<tr>
<td>(e.g. SRSF2)</td>
<td>IDH 1/2 inhibitor</td>
<td>Enasidinib</td>
</tr>
<tr>
<td>IDH 1/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults

Michael R. Savona,¹ Luca Malcovati,² Rami Komrokji,³ Ramon V. Tiu,⁴ Tariq I. Mughal,⁵ Attilio Orazi,⁶ Jean-Jacques Kiladjian,⁷ Eric Padron,³ Eric Solary,⁸ Raoul Tibes,⁹ Raphael Itzykson,⁷ Mario Cazzola,² Ruben Mesa,⁹ Jaroslaw Maciejewski,⁴ Pierre Fenaux,⁷ Guillermo Garcia-Manero,¹⁰ Aaron Gerds,⁴ Guillermo Sanz,¹¹ Charlotte M. Niemeyer,¹² Francisco Cervantes,¹³ Ulrich Germing,¹⁴ Nicholas C. P. Cross,¹⁵ and Alan F. List,³ on behalf of the MDS/MPN International Working Group

¹Vanderbilt-Ingram Cancer Center/Vanderbilt University Medical Center, TN; ²University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ³H. Lee Moffitt Cancer Center, Tampa, FL; ⁴Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; ⁵Tufts University Medical Center, Boston, MA; ⁶Weill Cornell Medical College, New York, NY; ⁷Hôpital Saint-Louis, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot, Paris, France; ⁸Institut Gustave Roussy, Villejuif, France; ⁹Mayo Clinic Cancer Center, Scottsdale, AZ; ¹⁰MD Anderson Cancer Center, Houston, TX; ¹¹Hospital Universitario y Politécnico La Fe, Valencia, Spain; ¹²University of Freiburg, Germany; ¹³The August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain; ¹⁴University of Düsseldorf, Düsseldorf, Germany; and ¹⁵University of Southampton and Wessex Regional Genetics Laboratory, Salisbury, United Kingdom
MDS/MPN: Summary

• Clinical, laboratory, pathology, and genetic features are used to diagnose MDS/MPN and its subtypes

• The combination of increased WBC and/or platelet counts with anemia can make treatment decisions challenging; hypomethylating agents are commonly employed

• For younger patients with higher-risk disease and an acceptable co-morbidity index, allogeneic HSCT is the preferred treatment

• Searching for actionable mutations may provide opportunities for targeted therapy; accrual in clinical trials is highly recommended for these rare diseases
Acknowledgements

Stanford
Jim Zehnder
Jason Merker
Cheryl Langford
Isabel Reyes
Justin Abuel
Cecelia Perkins
Nini Estevez
Lenn Fechter

Mayo Clinic, Scottsdale
Ruben Mesa
John Camoriano

Community of MPN Investigators
Our Patients & Their Caregivers

Stanford Division of Hematology
Charles and Ann Johnson Foundation