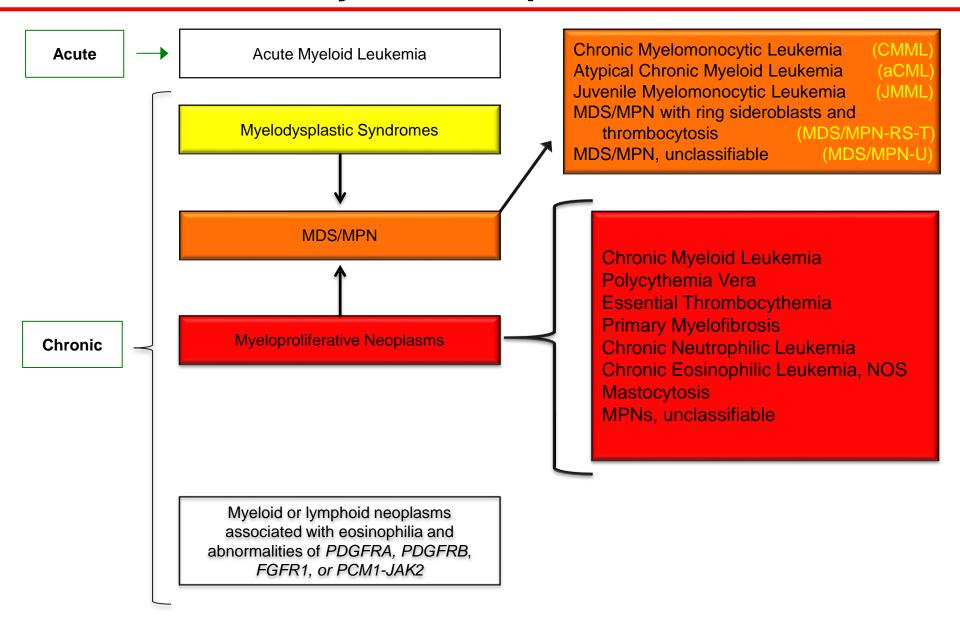
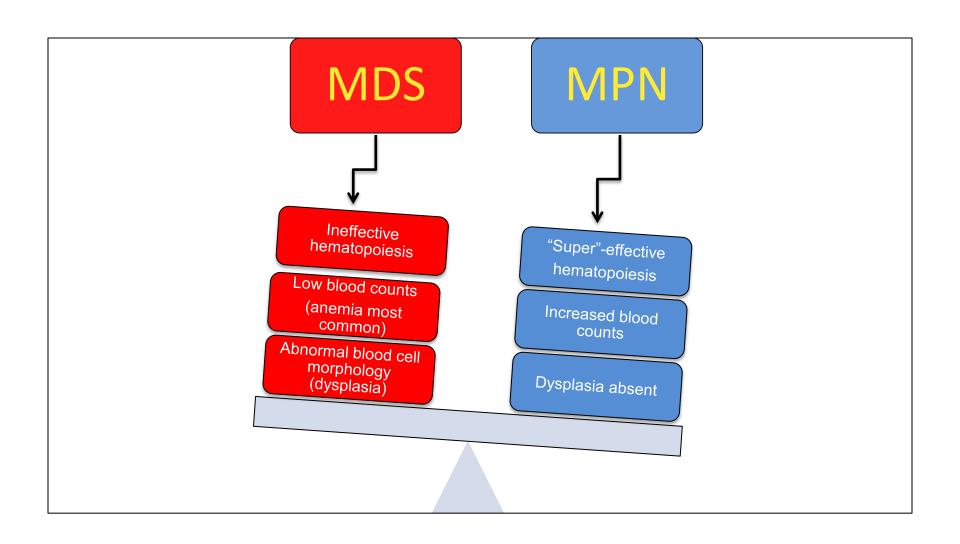


2017 Update on

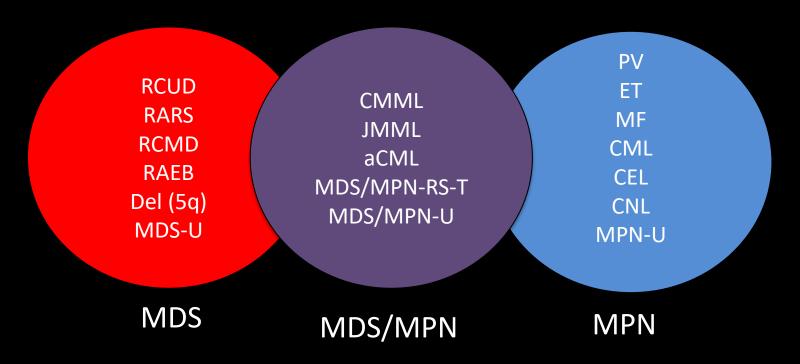
MDS


MPN

Overlap Neoplasms


JASON GOTLIB, MD, MS
PROFESSOR OF MEDICINE (HEMATOLOGY)
STANFORD UNIVERSITY SCHOOL OF MEDICINE
JASON.GOTLIB@STANFORD.EDU

MAYO MPN PATIENT CONFERENCE: FEBRUARY 26, 2017


2016 WHO Classification Scheme for Myeloid Neoplasms

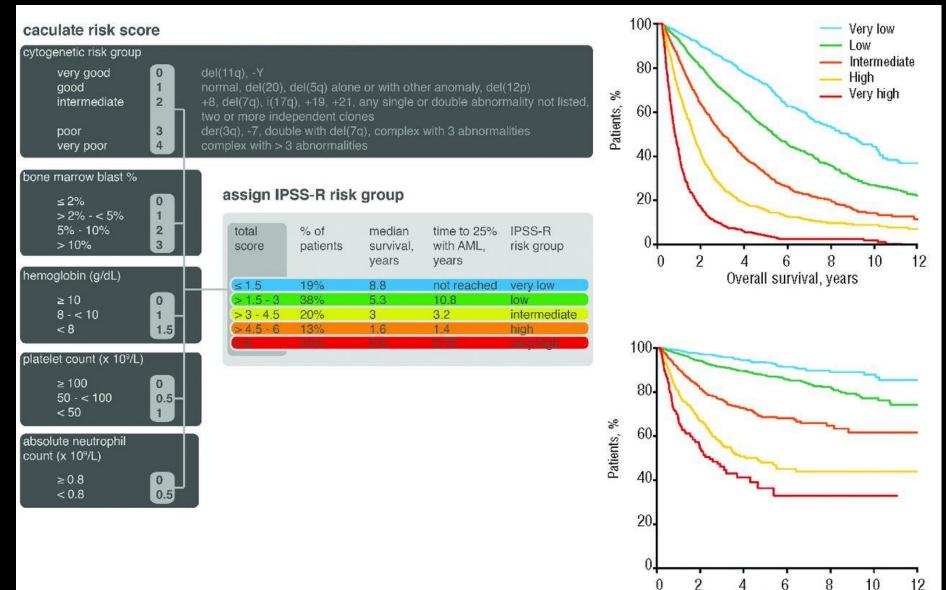
Features of MDS and MPN

MDS / MPN: An Overlap Neoplasm

Dysplasia Ineffective hematopoiesis

Proliferation Effective hematopoiesis

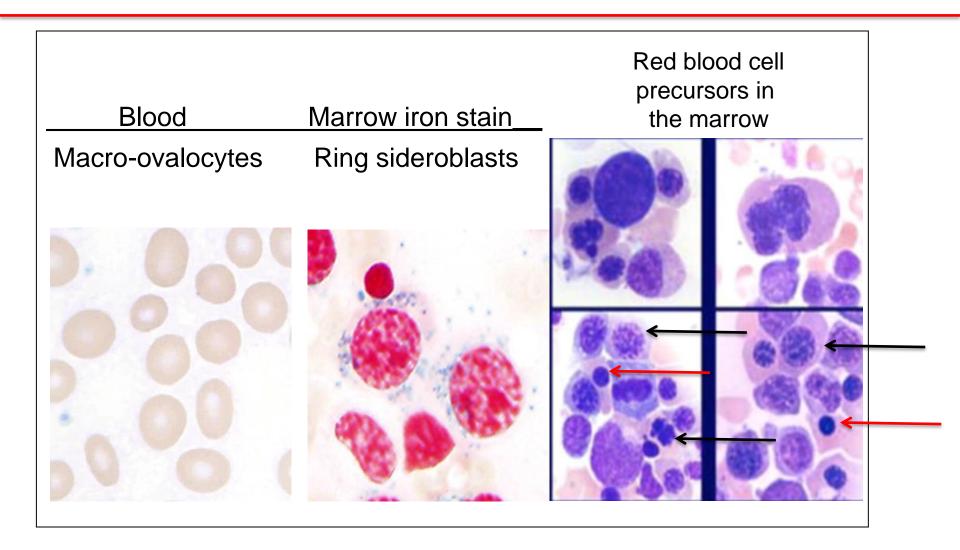
Some Things Shouldn't Overlap



2016 World Health Organization Classification of MDS

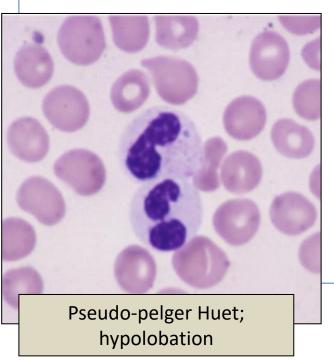
Subtype	Blood	Bone marrow
MDS with single lineage dysplasia (MDS-SLD) ³	Single or bicytopenia	Dysplasia in ≥10% of one cell line, <5% blasts
MDS with ring sideroblasts (MDS-RS)	Anemia, no blasts	≥15% of erythroid precursors w/ring sideroblasts, or ≥5% ring sideroblasts if <i>SF3B1</i> mutation present
MDS with multilineage dysplasia (MDS-MLD)	Cytopenia(s), <1 x 10 ⁹ /L monocytes	Dysplasia in ≥10% of cells in ≥2 hematopoietic lineages, ± 15% ring sideroblasts, <5% blasts
MDS with excess blasts-1 (MDS-EB-1)	Cytopenia(s), ≤2%–4% blasts, <1 x 10 ⁹ /L monocytes	Unilineage or multilineage dysplasia, 5%–9% blasts, no Auer rods
MDS with excess blasts-2 (MDS-EB-2)	Cytopenia(s), 5%–19% blasts, <1 x 10 ⁹ /L monocytes	Unilineage or multilineage dysplasia, 10%–19% blasts, ± Auer rods
MDS, unclassifiable (MDS-U)	Cytopenias, ±1% blasts on at least 2 occasions	Unilineage dysplasia or no dysplasia but characteristic MDS cytogenetics, <5% blasts
MDS with isolated del(5q)	Anemia, platelets normal or increased	Unilineage erythroid dysplasia, isolated del(5q), <5% blasts
Refractory cytopenia of childhood	Cytopenias, <2% blasts	Dysplasia in 1–3 lineages, <5% blasts
MDS with excess blasts in transformation (MDS-EB-T) ²	Cytopenias, 5%–19% blasts	Multilineage dysplasia, 20%–29% blasts, ± Auer rods

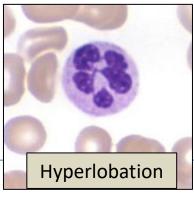
MDS: Revised International Prognostic Scoring System (IPSS-R)

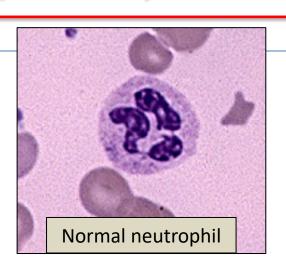

Time to AML evolution, years

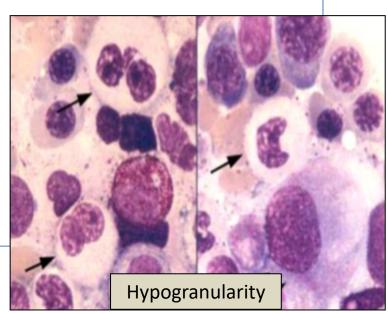
2016 World Health Organization Classification of MDS/MPN

	Blood	Marrow
CMML-0	>1000 monocytes/ul <2% blasts	Dysplasia in <u>></u> 1 cell line, <5% blasts
CMML-1	>1000 monocytes/ul 2-4% blasts	Dysplasia in >1 cell line, 5-9% blasts

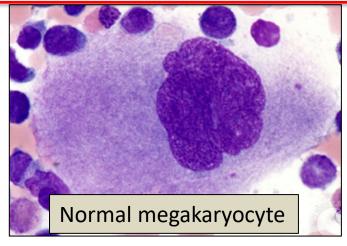

What is 'Dysplasia'?

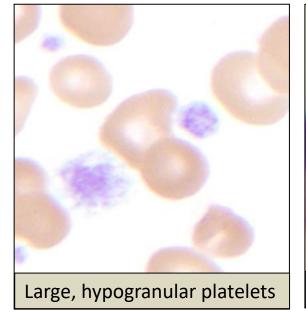

Red Blood Cell (Erythroid) Dysplasia (Dyserythropoiesis)

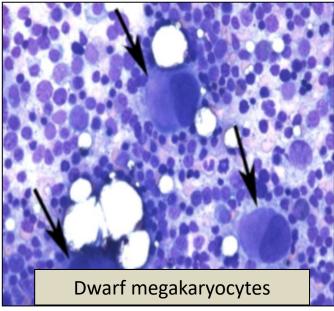



White Blood cell dysplasia (Dysgranulopoiesis)

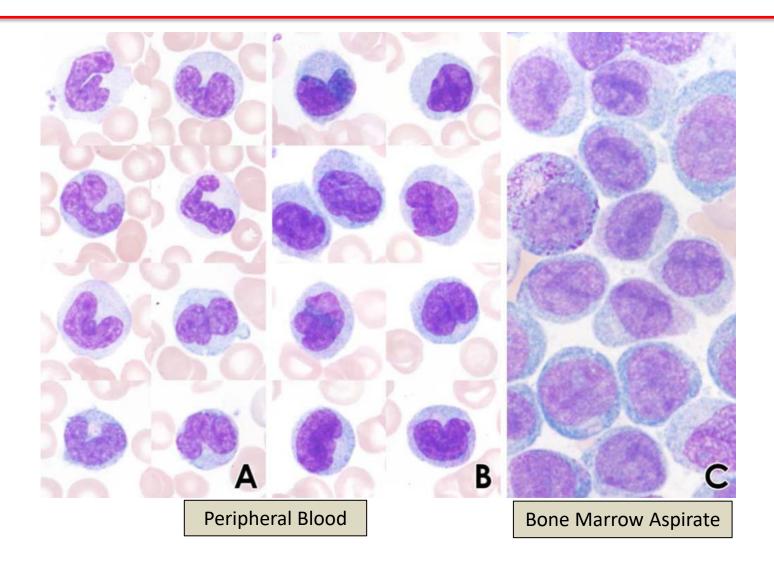
- Hypogranularity
- Hypolobation
- Hyperlobation
- Pseudo-Pelger Huet cells

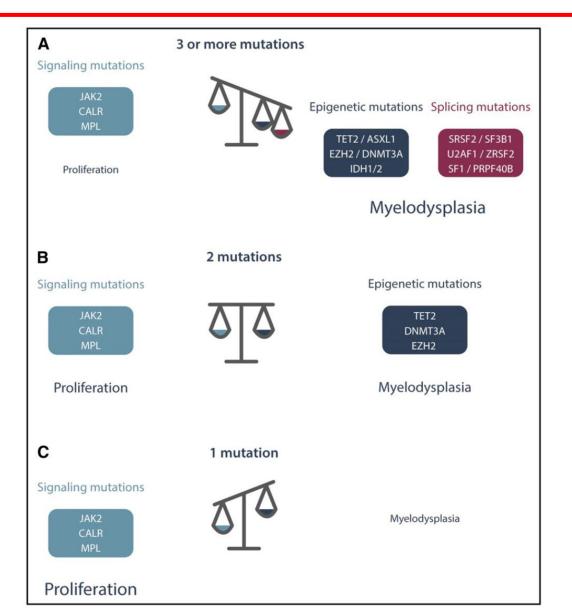




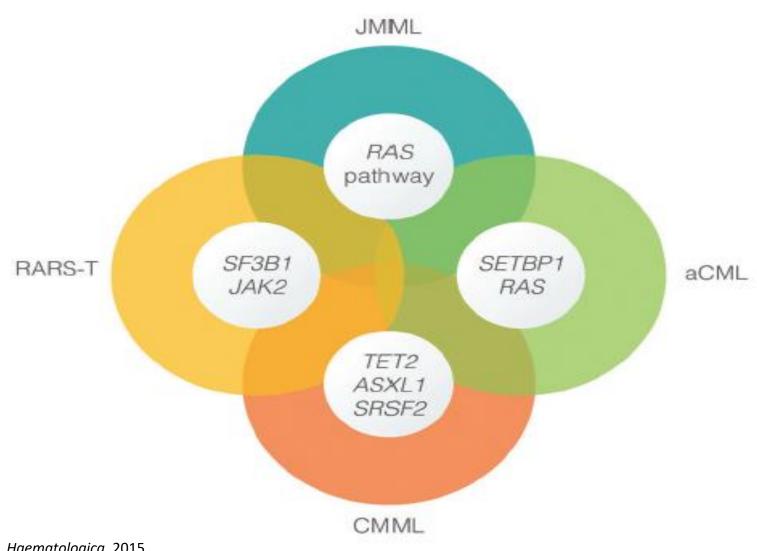

Megakaryocyte/platelet dysplasia (Dysmegakaryopoiesis)

- Micro/dwarf megakaryocytes
- Hypolobation; separate nucler lobes
- Platelets giant, bizarre, hypogranular



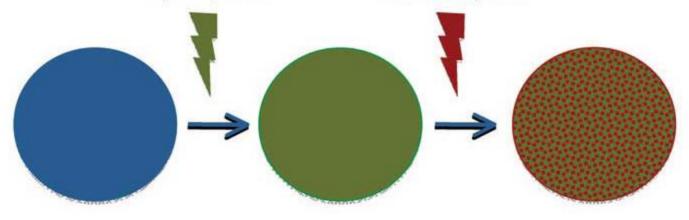


Monocytes in CMML


Mutations in MDS/MPN

How Certain Mutations May 'Tip the Scales' Toward MPN vs. MDS

Vainchenker Kralovics, Blood, 2017


Mutational Landscape of MDS/MPN

MDS/MPN-RS-T (RARS-T): Mutational Pathogenesis

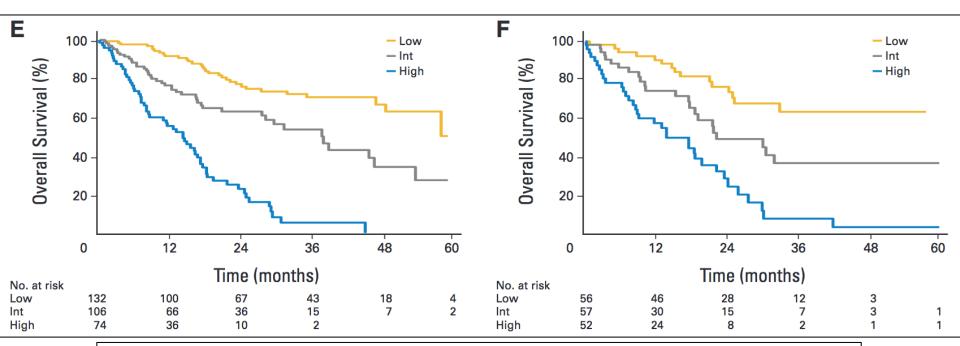
Somatic mutation of SF3B1 determining mitochondrial iron overload and ineffective erythropoiesis

Somatic mutation of JAK2 or MPL determining gain of signaling and thrombocytosis

Normal hematopoietic cell Ring sideroblasts and ineffective erythropoiesis (myelodysplastic features of RARS) Ring sideroblasts and thrombocytosis (myelodysplastic & myeloproliferative features of RARS-T)

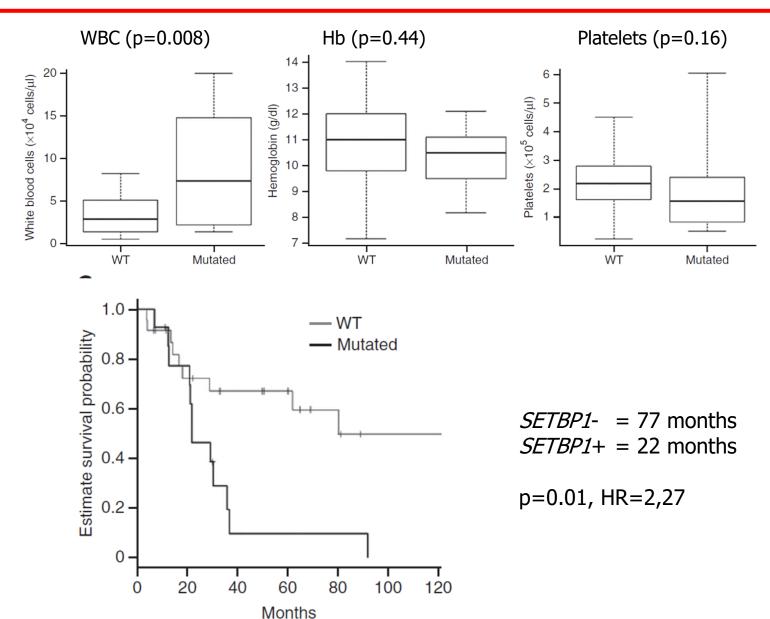
Prognosis in MDS/MPN

Prognostic Factors in CMML


Outcome and hazard ratio (HR)				
Factor	(P value)	Comment		
BM blasts ≥ 10%	Overall survival, HR 1.8 (P < .0001)	This parameter separates CMML-1 (BM blasts < 10%) from CMML-2 (BM blasts 10%-19%).		
WBC count $\geq 13 \times 10^9/L$	Overall survival, HR 2.6 ($P < .0001$) and progression to AML, HR 2.9 ($P < .0001$)	This parameter separates myelodysplastic-like CMML (WBC $< 13 \times 10^9$ /L) from myeloproliferative-like CMML (WBC $\ge 13 \times 10^9$ /L).		
Hemoglobin level < 10 g/dL	Overall survival, HR 1.5 (<i>P</i> < .0001)	Severe anemia may reflect clonally advanced myeloid neoplasm.		
CMML-specific cytogenetic risk†	Overall survival, HR 1.7 (<i>P</i> < .0001)	Abnormalities of chromosome 7 and complex karyotype represent negative prognostic factors in myeloid neoplasms.		
Platelet count $< 100 \times 10^9 / L$	Overall survival, HR 2.1 ($P < .0001$)	Thrombocytopenia may reflect clonally advanced myeloid neoplasm.		

CMML Prognostic Model: Bone Marrow Blast % and WBC Count

Subtype	Overall Survival (Months) n=386	Overall Survival (Months) CMML/MDS n=204	Overall Survival (Months) CMML/MPN n=182	P-value	AML Progression at 2 years
CMML-0 <5% blasts n=101	31	48	17	.03	7%
CMML-I 5-9% blasts n= 204	19	29	15	.008	18%
CMML-2 10-19% blasts n=81	13	17	10	.09	36%


^{*}WBC ≤ vs >13,000 (CMML/MDS vs CMML/MPN)

CMML Prognostic Scoring System

Leucocytosis (>15) Age (>65) Anemia Thrombocytopenia (<100) ASXL1 mutation	0 0 0 0 0	Presence 3 2 2 2 2 2	Low < 4 Intermediate 4-8 High >8
--	-----------------------	----------------------	--

SETBP1 Mutation in Atypical CML

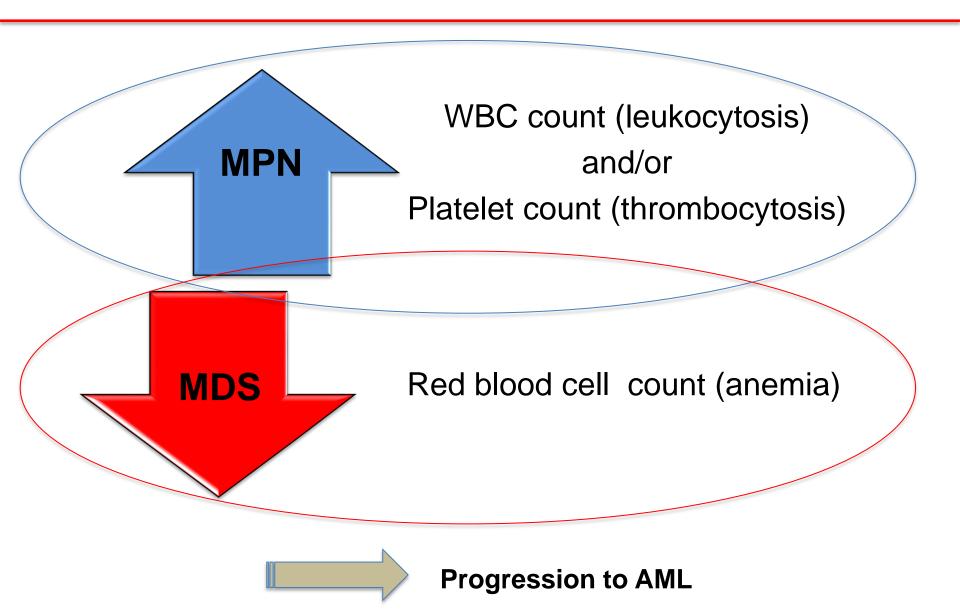
Atypical CML: Disease Course

The largest series of WHO-defined aCML: 55 cases from an Italian cohort.¹

• Overall median survival: 25 months compared with survivals ranging from 14 to 30 months from 3 smaller studies.²⁻⁴

- Transformation to AML occurred in 22 patients (40%), with a median time from diagnosis of 18 months in the Italian study.¹
- Predictors of shorter survival: older age (>65 years), female gender, WBC count (>50x10⁹/L), and presence of immature circulating cells.¹

¹ Breccia et al, Haematologica, 2006 2 Kurzrock et al, J Clin Oncol, 2001 3 Martiat et al, Blood, 1991 4 Hernandez et al, Ann Oncol, 2000


Clinical Management

Goals of Therapy in MDS/MPN

> Cure

- Reduction of symptoms / splenomegaly
- Improvement of blood counts
- Cytogenetic / molecular remission
- Avoidance of disease progression / AML

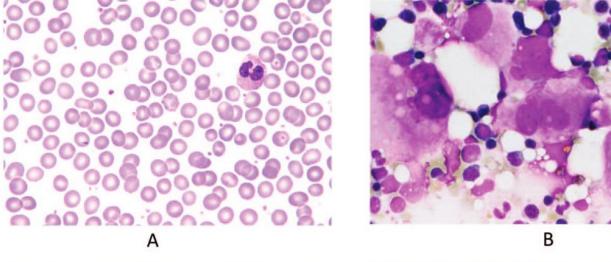
Common Clinical Issues in MDS/MPN

Case

 A 68 year-old man presents with a 6-month history of progressive fatigue. His CBC shows the following:

```
    White blood cell count: 5,800/ul (normal: 4,000-11,000/ul)
```

Hemoglobin/hematocrit: 8.4 g/dL / 27% (normal ~ 15 g/dL; 45%)

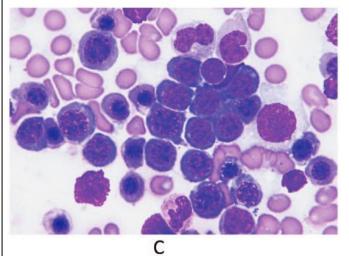

• Platelets: 620,000/ul (normal: 150,000-400,000/ul)

 A peripheral blood smear is reviewed and a bone marrow biopsy is performed.

Case (continued)

Peripheral blood:

Increased platelets & dysplastic neutrophil



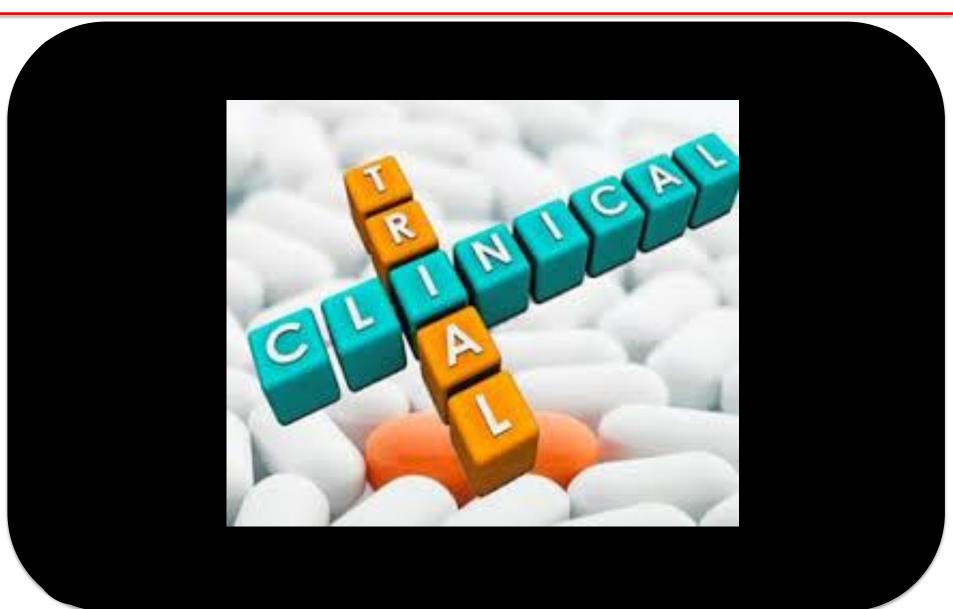
BM aspirate:

increased clustered megas

BM aspirate:

dysplastic erythroids

BM aspirate:


ring sideroblasts

Cytogenetics: normal

Myeloid mutation panel: SF3B1 & JAK2 V617F

Diagnosis:MDS/MPN-RS-T

Conventional Medications for MDS/MPN

Summary of Phase I/II Trials of Hypomethylating Therapy in CMML

- Overall response rate: 25-70% (usually ~30-40%)¹
- Complete remission rate: 10-58%
- Overall Survival (OS): 12-37 months

Prognostic factors for OS in pts treated with azacitidine

- Worse OS: BM blasts >10% and WBC >13 x 10⁹/L²
- Better OS: Absolute monocyte count <10 x 10⁹/L and PB blasts <5% ³

¹ Patnaik and Tefferi, *Am J Hematol*, 2016

²Ades et al, Leuk Res, 2013

³ Fianchi, et al, Leuk Lymphoma, 2013

Transplantation in CMML

- No randomized trials
- Increasing use of reduced intensity conditioning
 - Other donor sources: haploidentical; double umbilical cord units
- **FHCRC** (n=85)¹
 - 10-yr overall and relapse-free survival: 40% an 38%, respectively
 - Increasing age, higher SCT co-morbidity index, and poor-risk cytogenetics were associated with increased mortality and reduced relapse-free survival
- **EBMT** (n=513; 95 pts with sAML)²
 - 4-year overall and relapse-free survival: 33% and 27%, respectively
 - In multivariate analysis, the only significant prognostic factor for survival was the presence of a complete remission at time of transplantation

Targeted Therapy Considerations

Mutation	Therapy	Example
<i>JAK</i> 2 V617F	JAK inhibitor	Ruxolitinib
CSF3R T618I	JAK inhibitor	Ruxolitinib
RAS pathway (e.g. PTPN11, RAS, CBL, NF1)	MEK inhibitor	Trametinib
SF3B1	TGF-B ligand trap	Luspatercept
Other splicing gene mutations (e.g. <i>SRSF2</i>)	Splicing modulator	H3B-8800
IDH 1/2	IDH 1/2 inhibitor	Enasidinib

Consensus Response Criteria for MDS/MPN

Perspectives

An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults

Michael R. Savona,¹ Luca Malcovati,² Rami Komrokji,³ Ramon V. Tiu,⁴ Tariq I. Mughal,⁵ Attilio Orazi,⁶ Jean-Jacques Kiladjian,⁷ Eric Padron,³ Eric Solary,⁸ Raoul Tibes,⁹ Raphael Itzykson,⁷ Mario Cazzola,² Ruben Mesa,⁹ Jaroslaw Maciejewski,⁴ Pierre Fenaux,⁷ Guillermo Garcia-Manero,¹⁰ Aaron Gerds,⁴ Guillermo Sanz,¹¹ Charlotte M. Niemeyer,¹² Francisco Cervantes,¹³ Ulrich Germing,¹⁴ Nicholas C. P. Cross,¹⁵ and Alan F. List,³ on behalf of the MDS/MPN International Working Group

¹Vanderbilt-Ingram Cancer Center/Vanderbilt University Medical Center, TN; ²University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ³H. Lee Moffitt Cancer Center, Tampa, FL; ⁴Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; ⁵Tufts University Medical Center, Boston, MA; ⁶Weill Cornell Medical College, New York, NY; ⁷Hôpital Saint-Louis, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot, Paris, France; ⁸Institut Gustave Roussy, Villejuif, France; ⁹Mayo Clinic Cancer Center, Scottsdale, AZ; ¹⁰MD Anderson Cancer Center, Houston, TX; ¹¹Hospital Universitario y Politecnico La Fe, Valencia, Spain; ¹²University of Freiburg, Germany; ¹³The August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain; ¹⁴University of Düsseldorf, Düsseldorf, Germany; and ¹⁵University of Southampton and Wessex Regional Genetics Laboratory, Salisbury, United Kingdom

MDS/MPN: Summary

- Clinical, laboratory, pathology, and genetic features are used to diagnose MDS/MPN and its subtypes
- The combination of increased WBC and/or platelet counts with anemia can make treatment decisions challenging; hypomethylating agents are commonly employed
- For younger patients with higher-risk disease and an acceptable co-morbidity index, allogeneic HSCT is the preferred treatment
- Searching for actionable mutations may provide opportunities for targeted therapy; accrual in clinical trials is highly recommended for these rare diseases

Acknowledgements

