Adding insult to injury: MPNs transforming to acute leukemia

Jeanne Palmer

February 26, 2017

Mayo Clinic, Phoenix, AZ

What is acute leukemia?

- Cancer of the white blood cells
- Acute leukemia-
 - Acute myelogenous leukemia
 - Acute myeloid leukemia
 - Myelofibrosis- Blast phase
- Can arise de novo or from another bone marrow disorder -such as MPN- ET/PV/MF
- Rarely, may present as a granulocytic sarcoma/ extramedullary AML

Leukemia Incidence

- H&N
- GI
- ☐ Respiratory system
- Bones & joints
- Soft tissue
- Skin
- Breast
- ☐ Genital system
- Urinary system
- Eye & orbit
- □ CNS
- Endocrine system
- **■** Lymphoma
- Multiple myeloma
- Other
- Leukemia

4% of new cancer cases 44, 240 New patients

Jemal, A. et al. CA Cancer J Clin 2007

What do we see?

- Increased blasts in the peripheral blood
- Decrease in normal blood counts
- Increasing fatigue or symptoms

Microscope

I have blasts in my differential?

Do I have AML?

What percentage of blasts defines AML?

 For acute myeloid leukemia, also referred to as myelofibrosis- blast phase: >20% blasts

• For myelofibrosis- accelerated phase: 11-19% blasts

How often does this occur?

- PV
 - 2.3% at 10 years
 - 5.5% at 15 years
 - <10% at 20 years.
- ET
 - 3 per 1000 person-years
 - 2.6% at 10 years
 - 5.3% at 15 years

What increases the risk?

- In PV patients
 - Pipobroman
 - P32
 - Busulphan
- In ET patients
 - Little data, but not much seems to contribute to leukemic conversion

How often does MF transform to AML

- In the 525 patients used to develop DIPSS- 70 (13%) of patients progressed to blast phase
- Depending on risks evaluated, can range from 12%-31% at 10 years

What predicts "blast phase" in PMF

 Increasing WBC, and increased number of blasts in the marrow or peripheral blood

Platelet count <100 x 109

- Increasing number of chromosome mutations in the bone marrow
- Lack of JAK2/MPL/CAL-R mutation

Myelofibrosis prognosis

DIPSS	DIPSS plus
Anemia (hgb <10)	DIPSS score
WBC >25	Platelets <100
Blasts >1%	Transfusion dependant
Constitutional symptoms	poor risk cytogenetics: complex karyotype or any sole or two abnormalities including +8, -7/7q-, - 5/5q-, inv(3), i(17q), 12p-, 11q23 rearrangement
Age >60	

Chromosome mutations

Prognostically important genes, other than JAK2/CALR/MPL, in essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF)

How do we treat blast phase?

- Hypomethylating agents:
 - 5-azacitadine or decitabine
 - Sometimes can add another agent on in the setting of a clinical trial
- Induction chemotherapy→bone marrow transplant
- Targeted agents on clinical trial: such as IDH1 or IDH2 inhibitor, spliceosome inhibitor, Flt-3 ITD inhibitor

Hypomethylating agents

- Outpatient chemotherapy
- Given 5-7 days as either IV infusion or subcutaneous injection
- Well tolerated, may cause a little nausea, but no hair loss.
- Do not cure disease, help slow down the pace

Induction chemotherapy

- *Induction*: "7 + 3"
 - Cytarabine (ARA-C) 100 mg/m2/day continuous infusion x 7 days
 - Anthracycline on days 1-3
 - Goal: get rid of leukemia!
- Response assessment:
 - Difficult in MF due to abnormal marrow at baseline
 - Often determined by blasts in the blood/count recovery

Bone marrow transplant!

 Unlikely to stay in remission with induction chemotherapy alone

 Bone marrow transplant can help maintain the remission

Induction chemotherapy bone marrow transplant

- Significant morbidity and mortality
- Limited to patients who are young and/or fit enough to tolerate treatment

Targeted therapies:

AML is a complex biological disease

An ounce of prevention is worth a pound of cure

-Benjamin Franklin

Understand risk factors associated with your disease

- If you fall into a high risk group-
 - Peripheral blood blast percentage
 - Abnormal chromosomes on bone marrow biopsy
 - Mutations associated with higher risk disease
- Consider earlier treatment
 - Bone marrow transplant
 - Hypomethylating agent (in the case of increased blasts)

Summary

- Acute myeloid leukemia, or MF-blast phase is a serious complication of MPN
- Understanding the risk factors will help decide frequency of monitoring and treatment strategies
- There are treatments available, however, important to establish goals of care up front

