

A Vision of the Future of MPNs

Jason Gotlib, MD, MS Jason.gotlib@stanford.edu Professor of Medicine (Hematology) Stanford Cancer Institute

> Mayo Patient Conference March 3, 2019

Leonard "Bones" McCoy and his tricorder

Star Trek has always reminded us of the future possibilities of medicine

Elements of the Future of Medicine

- Personalized technology
- High speed and wireless
- Miniaturization
- Wearables and internal sensors for monitoring of health & disease
- Ever-present, analytics-enabled, real-time, individualized attention to prevent and treat disease

The Revolution in Sensors (1)

Lens with glucose sensor to track sugar level in tears

Wearable postage-stamp size patch that measures blood pressure

Kraft, Nat Geo, 2019

The Revolution in Sensors (2)

RESEARCH ARTICLE

BIOMEDICINE

Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care

Ha Uk Chung^{1,2*}, Bong Hoon Kim^{1,3,4,5*}, Jong Yoon Lee^{4,6*}, Jungyup Lee^{4*}, Zhaoqian Xie^{3,7,8*}, Erin M. Ible^{5,10}, KunHyuck Lee^{1,3}, Anthony Banks^{1,4,5,11}, Ji Yoon Jeong⁴, Jongwon Kim^{3,12}, Christopher Ogle^{1,5}, Dominic Grande^{4,6}, Yongjoon Yu⁴, Hokyung Jang⁴, Pourya Assem⁶, Dennis Ryu^{1,5}, Jean Won Kwak^{1,8}, Myeong Namkoong^{1,13}, Jun Bin Park⁴, Yechan Lee⁴, Do Hoon Kim⁴, Arin Ryu⁴, Jacescok Jeong⁴, Kevin You⁴, Bowen Ji^{5,7,8,14}, Zhuangjian Liu¹⁵, Qingze Huo^{3,7,8}, Xue Feng¹⁶, Yujun Deng^{7,17}, Yeshou Xu^{7,18}, Kyung-In Jang⁹, Jeonghyun Kim³⁰, Yihui Zhang¹⁶, Roozbeh Ghaffari^{1,13,13}, Casey M. Rand^{10,21}, Molly Schau²², Aaron Hamwas^{21,22,23}, Debra E. Weese-Mayer^{10,21,23}, Yonggang Huang^{3,5,7,8}, Seung Min Lee²⁴, Chi Hwan Lee²⁵, Naresh R. Shanbhag⁶, Amy S. Paller^{5,9,23}], Shuai Xu^{1,5,8}], John A. Rogers^{1,3,4,5,4,3,6,6,7}]

Chung et al. Science March 1, 2019

Predisposition to MPN

In 2033, Alex Saven is born and his parents wish to understand what are his future risks of disease

A fingerstick prick of blood or internal biosensor will be used to conduct an integrated scan of current health and a probability assessment of future heath risks, including MPN

Assessing Inherited Predisposition: More than Just Gene Variants

Cost is Decreasing Dramatically

Source: Wetterstrand KA - DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: genome.gov/sequencingcosts.

Dynamic Re-Assessment of Predisposition

Predisposition

Low MPN Risk Low risk of thrombosis Low risk of AML

High MPN Risk High risk of thrombosis High risk of AML

Low MPN Risk High risk of thrombosis Low risk of AML

Early Disease Detection

Early disease detection: Biosensors to detect abnormal expansion blood progenitor cells

Biosensors for early detection of mutated pre-leukemic cells

Clonal hematopoiesis of indeterminate potential (CHIP) a.k.a Age-related clonal hematopoiesis (ARCH)

Jaiswal *et al, NEJM*, 2014

Clonal hematopoiesis of indeterminate potential (CHIP)

The most common genes identified

Alex, now 50, feels great. Blood counts and exam normal Biosensor reading picks up a new *JAK2* V617F mutation. Burden of 2% circulating in the blood.

Gene

Jaiswal *et al, NEJM*, 2014

Disease Monitoring

2019 Prognostic Scoring Systems

Alex is now 62 and has a new diagnosis of primary myelofibrosis.

Myelofibrosis/MPN Scoring Schemes

- IPSS
- DIPSS
- DIPSS-Plus
- MIPSS70(Plus)
- GIPSS
- MYSEC (secondary MF)
- Sanger MPN risk calculator

2019: A snapshot in time of 'mutation landscape'

2030 ? Continuous monitoring of mutation dynamics

Refined, Continuous Risk Re-Stratification in MPNs

Now: single cell rather than bulk analysis of mutations

In the future:

Real time, monitoring of single cell mutation landscape and early detection of treatment effects and resistance/relapse

Mission Bio

Treatment

O * Notable O O Labs Stanford Hospital Patient 689AML Results Bone marrow (689AML1), Peripheral Blood (689AML2

Ex vivo drug sensitivity testing

Intrapatient drug sensitivity Bone marrow (689AML1)

Limitations of 'Biospecific' Therapies

- Tumor heterogeneity
 - Polyclonality
 - Numerous potential targets
 - Co-mutations
 - Clonal evolution
 - Driver vs. passenger mutations
 - Variable gene expression
 - Innate drug sensitivity

In silico and *ex vivo* Assays Guiding Personalized Treatment Selection in Myeloid Malignancies

2. Drusbosky et al, Leukemia Research 2017

Genomic Signatures Predict Venetoclax Response in AML Computational protein network mapping/ex vivo drug sensitivity

- 74 samples from patient with refractory/relapsed AML
 - 86% ex vivo venetoclax responses matched computer simulation prediction
 - Correctly predicted responses of 2 treated patients
- Computer derived genomic signatures identified resistance/sensitivity to venetoclax

Drusbosky et al, ASH 2017, #2707 (Cellworks)

Old and New Paradigms of Treatment

Dr. Siddhartha Mukherjee, TED Talk: "Soon We'll Cure Diseases with a Cell, Not a Pill", 2015

Immunotherapy: A successful approach in solid tumors

CAR T-Cell Therapy

ARTICLE | VOLUME 173, ISSUE 6, P1439-1453.E19, MAY 31, 2018

Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia

Gene Editing with CRISPR/CAS9

Home / News & Opinion

US Companies Launch CRISPR Clinical Trial

The Germany-based study will test an ex vivo genome-editing therapy for the inherited blood disorder β -thalassemia. September 2018

CRISPR Therapeutics and Vertex Pharmaceuticals

CTX001 works by cleaving a gene called *BCL11A*, which suppresses production of fetal hemoglobin

CTX001 could efficiently edit the target gene in more than 90 percent of hematopoietic stem cells to achieve about 40 percent of fetal hemoglobin production, which investigators believe is sufficient to improve a patient's symptoms.

CRISPR/Cas9 is delivered to the cells in culture resulting in the desired edit

> BCL11A deleted from blood stem cells

Potential Issues/Concerns

• Low-risk ET/PV- is CRISPR needed?

• **Myelofibrosis**– genetically complex

- Off-target safety concerns
 - Accidental editing of tumor suppressor genes, oncogenes, or other parts of the genome

TRANSPLANTATION

Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy

Akanksha Chhabra,¹* Aaron M. Ring,^{2,3,4}* Kipp Weiskopf,^{2,3,4}* Peter John Schnorr,¹ Sydney Gordon,^{2,3,4} Alan C. Le,¹ Hye-Sook Kwon,¹ Nan Guo Ring,^{2,3,4} Jens Volkmer,^{2,3,4} Po Yi Ho,^{2,3,4} Serena Tseng,^{2,3,4} Irving L. Weissman,^{2,3,4,5} Judith A. Shizuru^{1,2,3†}

Hematopoietic stem cell (HSC) transplantation can cure diverse diseases of the blood system, including hematologic malignancies, anemias, and autoimmune disorders. However, patients must undergo toxic conditioning regimens that use chemotherapy and/or radiation to eliminate host HSCs and enable donor HSC engraftment. Previous studies have shown that anti-c-Kit monoclonal antibodies deplete HSCs from bone marrow niches, allowing donor HSC engraftment in immunodeficient mice. We show that host HSC clearance is dependent on Fc-mediated antibody effector functions, and enhancing effector activity through blockade of CD47, a myeloid specific immune checkpoint, extends anti-c-Kit conditioning to fully immunocompetent mice. The combined treatment leads to elimination of >99% of host HSCs and robust multilineage blood reconstitution after HSC transplantation. This targeted conditioning regimen that uses only biologic agents has the potential to transform the practice of HSC transplantation and enable its use in a wider spectrum of patients.

Chemotherapy-free Conditioning (Preparatory) Regimen for Transplantation

ACK2

D

ACK2 + CV1mb

Fig. 3. Combining anti-c-Kit antibodies with CD47 blockade produces profound depletion of HSCs and clearance of the bone marrow niche in immunocompetent mice. (A) Total number of

PLENARY ABSTRACT #4

Secreted Mutant Calreticulins As Rogue Cytokines

Christian Pecquet, Thomas Balligand, Ilyas Chachoua, Anita Roy, Gaelle Vertenoeil, Didier Colau, Emanuel Fertig, Caroline Marty, Harini Nivarthi, Jean-Philippe Defour, Erica Xu, Eva Hug, Heinz Gisslinger, Bettina Gisslinger, Martin Schalling, Ilaria Carola Casetti, Elisa Rumi, Daniela Pietra, Chiara Cavalloni, Luca Arcaini, Mario Cazzola, Norio Komatsu, Yoshihiko Kihara, Yoshitaka Sunami, Yoko Edahiro, Marito Araki, Isabelle Plo, William Vainchenker, Robert Kralovics and Stefan N Constantinescu

Mutant calreticulin goes through the secretory pathway and is secreted

Immuno-gold electron microscopy, using an anti-FLAG against FLAG-tagged CALR del52 expressed in the Ba/F3 cell line.

CALR mutant proteins are detected in plasma of patients with CALR mutations

By sandwich ELISA using antibodies directed against the mutant end-tail / common part of CALR proteins

CALR mutated myeloid/megakaryocytic cells

Peptide Vaccination Targeting CALR

ORIGINAL ARTICLE

The *calreticulin* (*CALR*) exon 9 mutations are promising targets for cancer immune therapy

MO Holmström^{1,2}, E Martinenaite², SM Ahmad², Ö Met^{2,3}, C Friese², L Kjær¹, CH Riley⁴, P thor Straten^{2,5}, IM Svane^{2,3}, HC Hasselbalch¹ and MH Andersen^{2,5}

The *calreticulin* (*CALR*) exon 9 mutations are found in ~ 30% of patients with essential thrombocythemia and primary myelofibrosis. Recently, we reported spontaneous immune responses against the *CALR* mutations. Here, we describe that CALR-mutant (*CALR*mut)-specific T cells are able to specifically recognize *CALR*mut cells. First, we established a T-cell culture specific for a *CALR*mut epitope. These specific T cells were able to recognize several epitopes in the *CALR*mut C terminus. Next, we established a *CALR*mut-specific CD4⁺ T-cell clone by limiting dilution. These CD4⁺ T cells recognized autologous *CALR*mut monocytes and hematopoietic stem cells, and T-cell recognition of target cells was dependent on the presence of *CALR*. Furthermore, we showed that the *CALR*mut response was human leukocyte antigen (HLA)-DR restricted. Finally, we demonstrated that the *CALR*mut-specific CD4⁺ T cells, despite their phenotype, were cytotoxic to autologous *CALR*mut cells, and that the cytotoxicity was mediated by degranulation of the T cells. In conclusion, the *CALR* exon 9 mutations are targets for specific T cells and thus are promising targets for cancer immune therapy such as peptide vaccination in patients harboring *CALR* exon 9 mutations.

Leukemia advance online publication, 15 August 2017; doi:10.1038/leu.2017.214

Summary: The Future of MPNs

- The future <u>diagnosis and monitoring</u> of MPNs will be real-time, wireless, personalized, and data-rich
- <u>Treatment</u>: harnessing the immune system to kill cancer
- The potential of genome editing is exciting, but will need to proceed with caution to understand safety issues and disease-specific role(s)

Acknowledgements

Stanford Parveen Abidi Justin Abuel John Baird Lenn Fechter Cheryl Langford **Cecelia Perkins** William Shomali Fiona Xu

dim Zehnder

Hasta 2004-2018

> Stanford Division of Hematology Charles and Ann Johnson Foundation