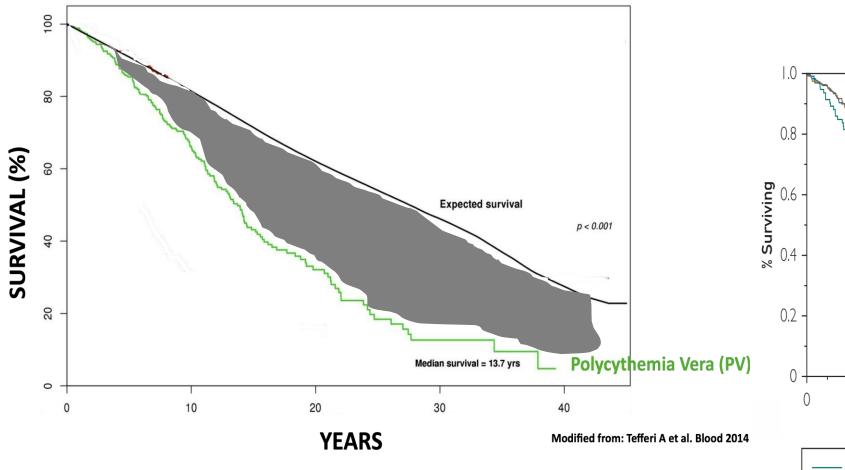
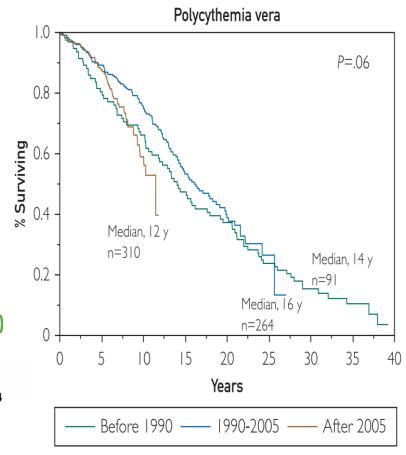
Managing Polycythemia Vera in 2021

Richard T. Silver, MD
Professor Emeritus of Medicine
Division of Hematology/Medical Oncology
Weill Cornell Medicine
New York, NY

12th Joyce Niblack Memorial Conference on Myeloproliferative Neoplasms February 19, 2021 Presented by the MPN Education Foundation


Disclosures


PharmaEssentia: Speakers Bureau

Consultant

Clinical Trials: Multiple

PV patients have shortened survival

Initial Treatment of PV

All agree we must phlebotomize patients

However, we should adjust for gender difference

• Men: Hct ≤ 45%

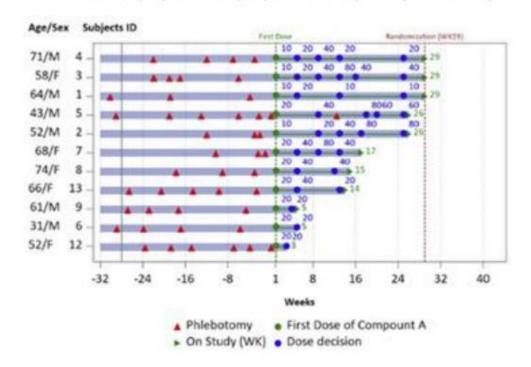
• Women: Hct $\leq 42\%$

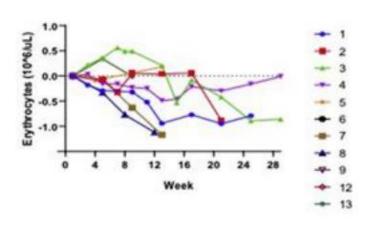
After Initial Phlebotomy Treatment

Must assess <u>subsequent</u> phlebotomy requirements first.

Phlebotomy requirements during the year prior to rIFNa, all patients (Cornell experience)

Quartile	# Patients	#PHL during the year prior to rIFN α	Median	Mean
1	9	1-4	3	2.8
2	9	5-7	5.5	5.7
3	8	8-12	9.5	9.6
4	8	12-25	15	16
Totals	34	Range: 1-25	7	8




Second-line treatments and clinical trials in PV: PTG-300 hepcidin mimetic

634.MYELOPROLIFERATIVE SYNDROMES: CLINICAL | NOVEMBER 5, 2020

PTG-300 Eliminates the Need for Therapeutic Phlebotomy in Both Low and High-Risk Polycythemia Vera Patients

Marina Kremyanskaya, Yelena Ginzburg, MD, Andrew T. Kuykendall, MD, Abdulraheem Yacoub, MD, Jay Yang, MD, Suneel K Gupta, PhD, Frank Valone, MD, Sarita Khanna, PhD, Srdan Verstovsek, MD PhD, Ronald Hoffman, MD

Treatment option in PV after initial phlebotomy to Hct ♂ 45%, ♀ 42%

Phlebotomy (continued)

Hydroxyurea

Interferon

Ruxolitinib after HU

Risk Assessment

(NCCN, ELN)

<u>Treatment</u>

Low Risk

Under 60 years of age

No thrombotic events

Phlebotomy + Aspirin

HCT < 45%

High Risk

More than 60 years of age History of thrombotic events Cytoreduction + Aspirin

HCT ≤ 45%

PV initial treatment approach: What do guidelines recommend? What do we recommend?

National Guidelines

Initial Treatment by Risk Group			
Low Risk	 Assess for new blood clots and major bleeding Manage cardiovascular risk factors Aspirin Phlebotomy 		
High Risk	 Assess for new blood clots and major bleeding Manage cardiovascular risk factors Aspirin Hydroxyurea or interferons 		

Weill Cornell practice

+ INTERFERON (IFN)

IFN or Hydroxyurea (HU)

NCCN Guidelines for Patients, Myeloproliferative Neoplasms, 2019

Related to Anemia

- 1) More frequent falls
- 2) Cognitive impairment
- 3) Dementia
- 4) Poor exercise tolerance
- 5) Impaired results after chemotherapy
- 6) Impaired results after myocardial infarction

Schrier S. Hem Onc. Jan 2015 DeLoughery, NEJM 2014

Myth of Phlebotomy-only: Phlebotomy is unacceptable as sole treatment

- 1. Poor Clinical Tolerance
- 2. Frequency of Vascular Complications
- 3. Risk of Early Progression to Myelofibrosis

Najean Y, Dresch C, Rain JD. Br J Haem 1994;86(1):233-5

MPN Patients are highly symptomatic regardless of subset

Fatigue	87%
Trouble concentrating	62%
Loss of appetite	61%
Inactivity	61%
Weight loss	52%
Itching	52%

Geyer and Mesa, Blood 2015

Annual rate of thrombosis in general population and in contemporary patients with polycythemia vera % pts/year

General	population	without risk factors	0.6
---------	------------	----------------------	-----

General	population	with	multiple	risk factors	0.9
----------------	------------	------	----------	--------------	-----

PV patients with low risk	2.23
---------------------------	------

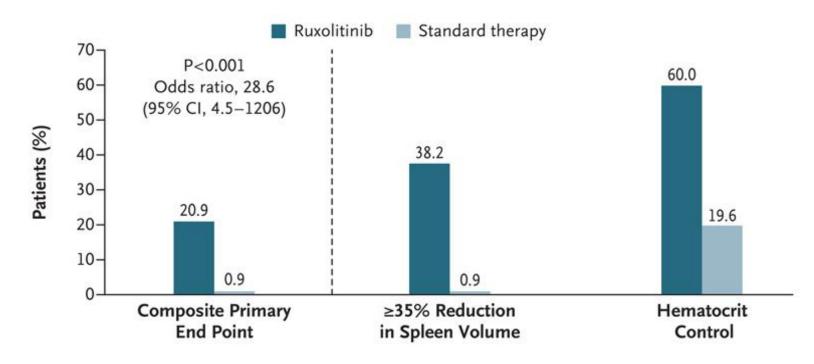
PV patients with high risk 3.14

With permission and courtesy of T. Barbui MD 10th International Patient Symposium

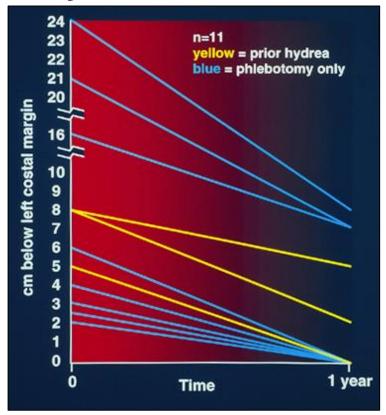
Comparative incidence of thrombosis (PVSG study)

All events, first 378 weeks of study (7.3 years)

Treatment	Total patients	No. events	%
Hydrea + phlebotomy	51	7	13.7
Phlebotomy-only	134	51	38.1

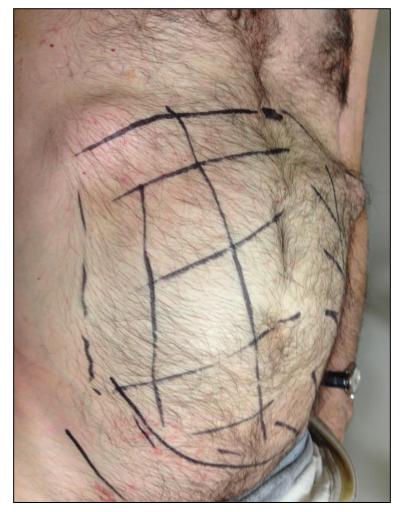


"Approved" Treatment for HU Resistance or Toxicity


RESPONSE Trial: Ruxolitinib vs. "Standard therapy"

CHANGE IN SPLEEN SIZE

1 year after rIFN-a



2 years after rIFN-a

- 27/30 (90%) patients with initial splenomegaly showed greater than 50 % reduction in spleen size whether or not they received prior HU
- In 23 (76.7%) patients, spleen became non-palpable

BEFORE rIFN RX

One year AFTER

Specific Activities of Interferon-alpha (rIFNa) of Interest in PV

- Suppresses megakaryopoiesis (Wang)
- Antagonizes action of PDGF (Lin)
- Inhibits erythroid progenitors in vitro (Means, Krantz)
- Anti-angiogenic (Folkman)
- Involved in JAK-STAT signaling
- Affects PV stem cell (Mullaly)
- Safe to use during pregnancy
- Not leukemogenic

Does Interferon-alpha prolong survival of PV patients?

Large study

Randomized, controlled

Long follow-up

MPN-RC 112 DALIAH CONTI-PV Low-PV

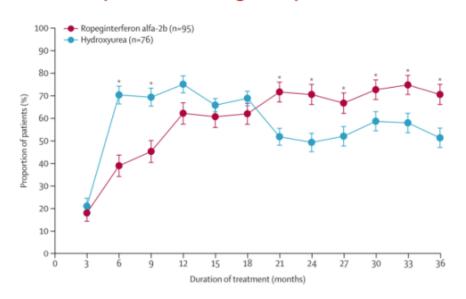
WCM (Cornell)

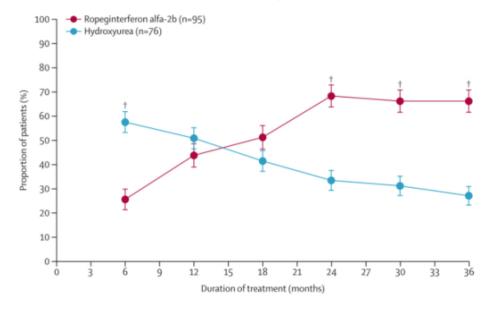
85-254 patients

~1-3 years

Median 10 years (up to 45)

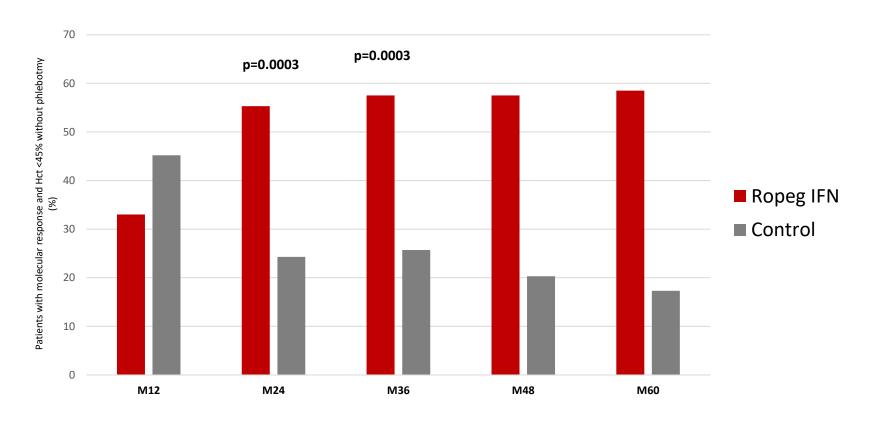
470 patients



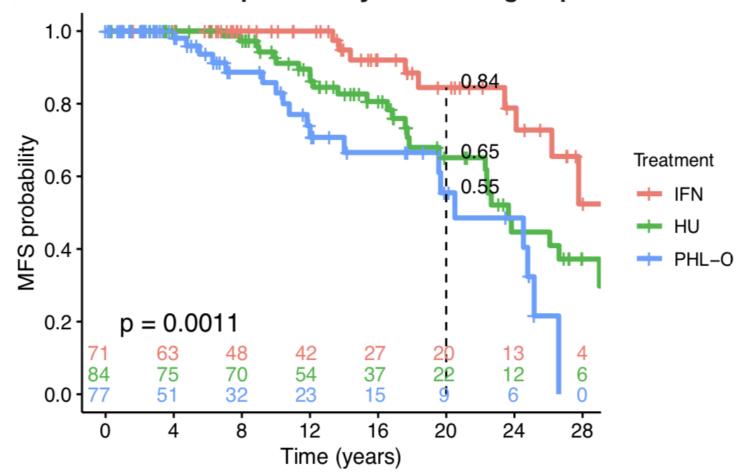

Ropeg-IFN is possibly better than HU in a randomized trial of high-risk PV (CONTI-PV)

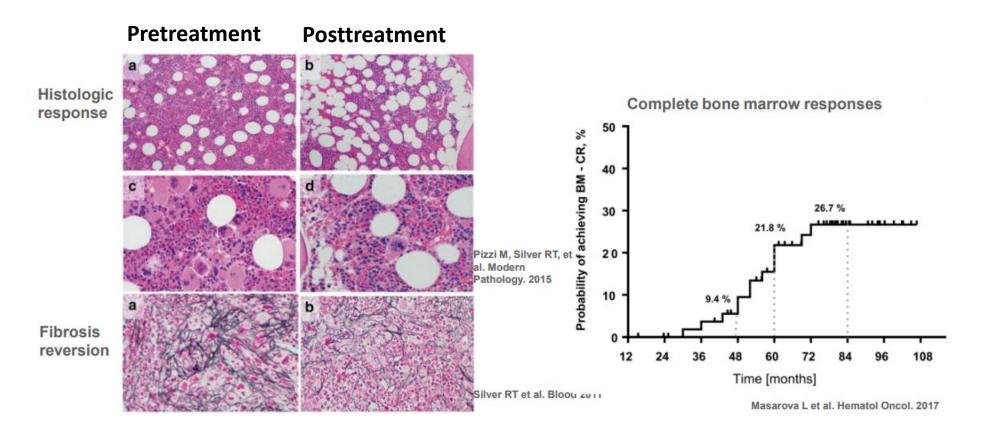
Ropeginterferon α -2b (Ropeg-FN) is a longer-acting, biweekly dosed form of Interferon-alpha

Complete hematologic response


Partial molecular response

Gisslinger H et al. Lancet Hematology 2020


Combined analysis of Hct<45% without phlebotomy AND molecular response

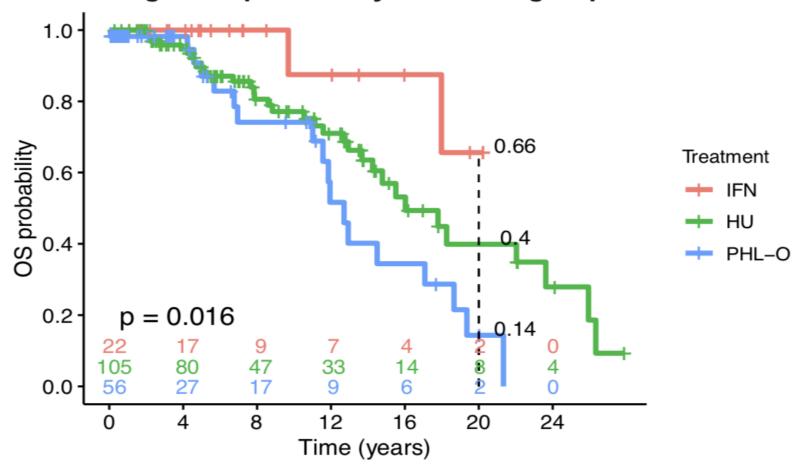

IFN is associated with improved MFS in low-risk PV

MFS of low-risk patients by treatment group

IFN in PV is disease-modifying

Longer time on IFN is associated with reduced MF

	Myelofibrosis (MF)
Variable	HR (95% CI, p-value)
Age	1.01 (0.99-1.03, NS)
Sex (Female/Male)	0.70 (0.46-1.07, NS)
Thrombosis history (Y/N)	1.18 (0.63-2.20, NS)
CV risk factors (Y/N)	0.81 (0.47-1.38, NS)
IFN (time on therapy)	0.91 (0.87-0.95, p<0.001)
HU (time on therapy)	0.98 (0.95-1.01, NS)
Other (time on therapy)	0.99 (0.94-1.05, NS)


9% MF risk reduction / year of IFN

Abu-Zeinah, Silver. Leukemia, in press, 2021

IFN is associated with improved OS in high-risk PV

OS of high-risk patients by treatment group

Longer time on IFN is associated with reduced mortality

	Mortality
Variable	HR (95% CI, p-value)
Age	1.10 (1.07-1.12, p<0.001)
Sex (Female/Male)	0.54 (0.36-0.83, p=0.005)
Thrombosis history (Y/N)	1.12 (0.61-2.04, NS)
CV risk factors (Y/N)	1.06 (0.67-1.68, NS)
IFN (time on therapy)	0.94 (0.90-0.99, p=0.012)
HU (time on therapy)	0.97 (0.94-1.00, NS)
Other (time on therapy)	1.00 (0.94-1.06, NS)

6% mortality risk reduction / year of IFN

Limitations of rIFN therapy

Side effects are mainly dose dependent; perhaps less with single isomer interferon, RHO-PEG.

Typically transient flu-like symptoms that occur shortly after injections

Headache Fever Mild skin reaction

Myalgia Chills Fatigue

Back/joint pain

Less common (resolve upon rIFN discontinuation or decrease in dose):

Chronic fatigue Confusion (elderly patients) Pulmonary, cardiac, or renal dysfunction

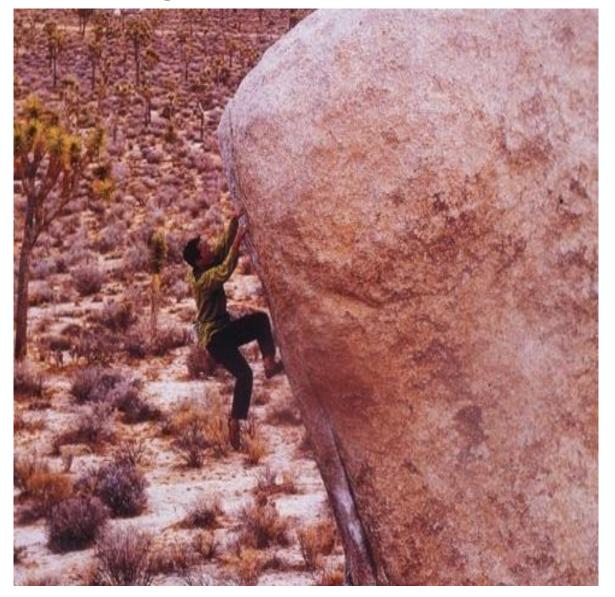
Depression Liver toxicity Neurological (gait disturbance,

Musculoskeletal pain Cytopenias frontal lobe dysfunction, bilateral

Alopecia Autoimmune disease lower extremity neuritis)

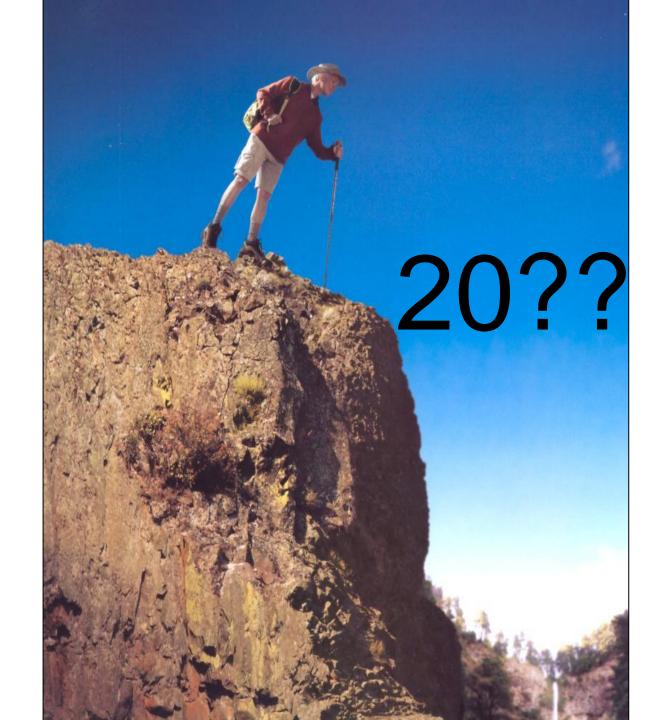
GI toxicity

Summary: Drop-out rate 15-25% in reported studies depending on dose, enthusiasm of physician and patient.



IFN should be considered for both low and high risk patients

	Initial treatment by risk group		
	Low risk	High risk	
NCCN	PHL-O	HU or IFN	
ELN	PHL-O	HU or IFN	
WCM	IFN > PHL-O	IFN > HU	



Climbing the PV rock

Interferon
Hydroxyurea
Ruxolitinib
Fedratinib
Transplantation
etc., etc...

Acknowledgements

WCM

- Ghaith Abu-Zeinah, MD
- Joseph Scandura, MD, PhD
- Spencer Krichevsky, MS
- Ellen K Ritchie, MD
- Andrew I Schafer, MD
- Paul Christos, PhD
- Tatiana Cruz, MD
- Diana Jaber, BS
- Gabriela Hoberman, BA
- Niamh Savage, BA
- Claudia Sosner, BSN
- Elwood Taylor, BS

Research funding

Established 1968

