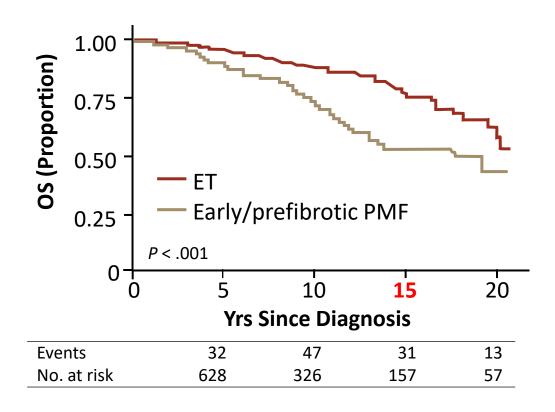
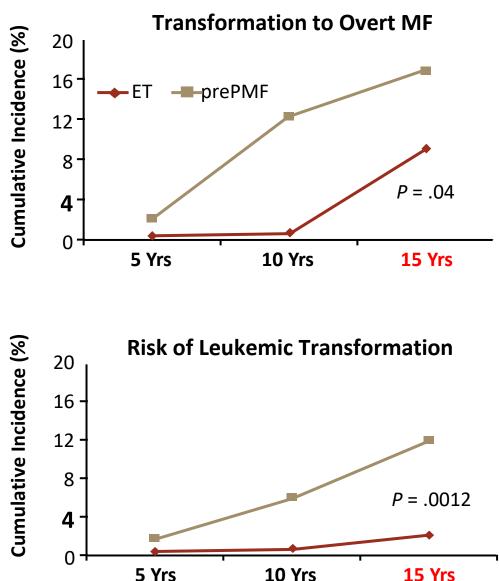


MDAnderson Cancer Center **Management of Myelofibrosis**

Srdan Verstovsek, M.D., Ph.D. Professor of Medicine, Department of Leukemia University of Texas, MD Anderson Cancer Center Houston, Texas, USA

Making Cancer History®


Myelofibrosis: Disease Course and Complications



Abbreviations: EMH, extramedullary hematopoiesis; ET, essential thrombocythemia; PMF, primary myelofibrosis; PS, performance status; PV, polycythemia vera; QOL, quality of life. 1. Mughal TI, et al. *Int J Gen Med.* 2014;7:89-101; 2. Haybar H, et al. *Cardiovasc Hematol Disord Drug Targets*. 2017;17(3):161-166.

Early/Prefibrotic Primary Myelofibrosis: Not So Aggressive Neoplasm

 International, observational study in which patients with ET or rediagnosed prePMF were followed for disease progression (N = 1,104)

Barbui T, et al. J Clin Oncol. 2011;29:3179-84.

The Heterogeneous Clinical Spectrum of Prefibrotic Myelofibrosis

Mimicking essential thrombocytopenia

Progression towards overt myelofibrosis

Time

Bleeding and thrombosis

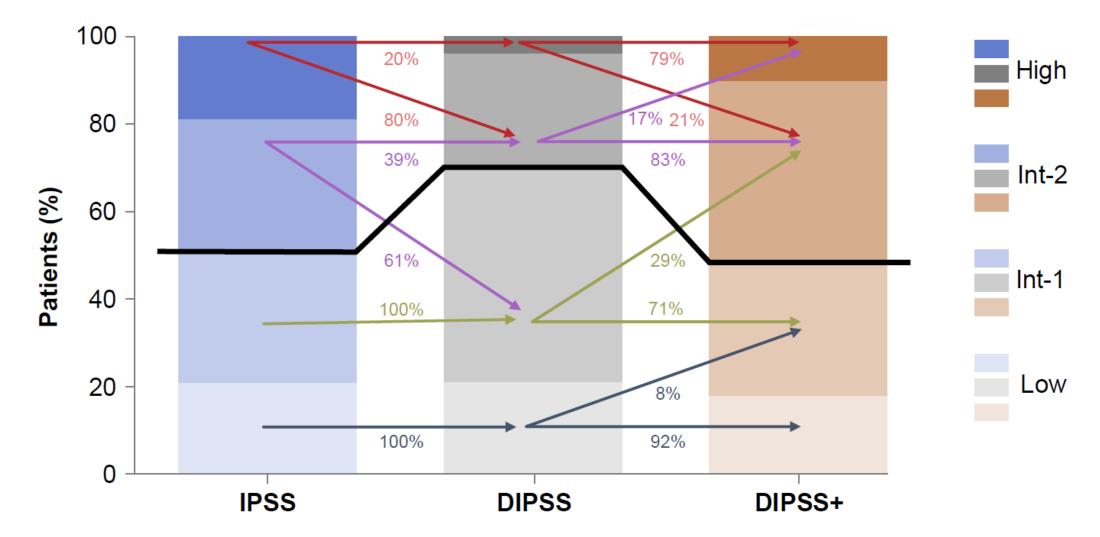
Symptoms of myelofibrosis

Life expectancy

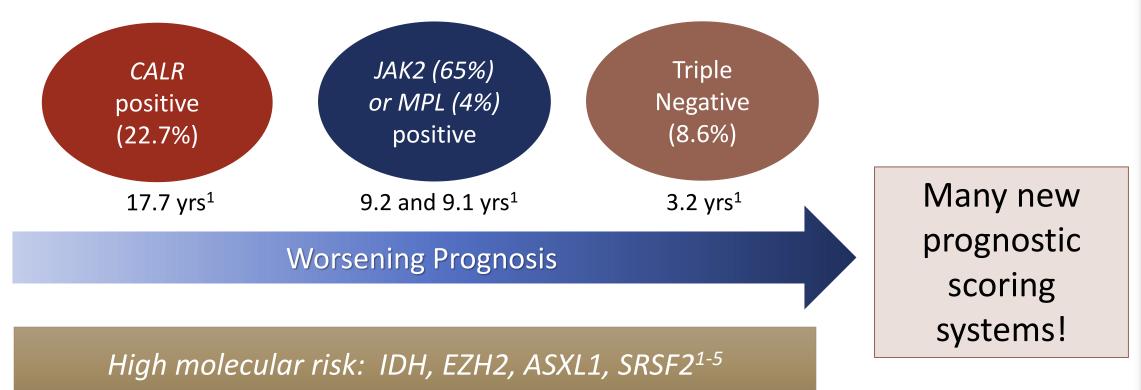
Classic Prognostic Models for Myelofibrosis

Parameter	Included in IPSS ²	Included in DIPSS ³	Included in DIPSS-Plus ⁴				
Age > 65 y	Yes (1 point)	Yes (1 point)	Yes ^a				
Hgb < 10 g/dL	Yes (1 point)	Yes (2 points)	Yes ^a				
WBC > 25 × 10 ⁹ /L	Yes (1 point)	Yes (1 point)	Yes ^a				
PB blood blasts ≥ 1%	Yes (1 point)	Yes (1 point)	Yes ^a				
Constitutional symptoms	Yes (1 point)	Yes (1 point)	Yes ^a				
Unfavorable karyotype ^b	No	No	Yes (1 point)				
RBC transfusion dependence ^c	No	No	Yes (1 point)				
Platelet count < 100 × 10 ⁹ /L	No	No	Yes (1 point)				
Can be used at any time point	No (only at diagnosis)	Yes	Yes				

	Median Survival, Years										
Risk Group	IPSS ²	DIPSS ³	DIPSS-Plus ⁴								
Low	11.3	Not reached	15.4								
Intermediate-1	7.9	14.2	6.5								
Intermediate-2	4.0	4.0	2.9								
High	2.3	1.5	1.3								


Abbreviations: DIPSS, dynamic International Prognostic Scoring System; Hgb, hemoglobin; IPSS, Interational Prognostic Scoring System; PB, peripheral blood; RBC, red blood cell; WBC, white blood cell count. ^aZero, I, 2, and 3 points are assigned to DIPSS categories of low, intermediate-1, intermediate-2, and high risk, respectively; features are not weighted individually.

^bComplex karyotype or a single or 2 abnormalities including + 8, -7/7q-, i(17q), -5/5q-, 12p-, inv(3), or 11q23 rearrangement.


^cPresentation with symptomatic anemia necessitating RBC transfusion at time of referral, or a history of RBC transfusions for myelofibrosis-associated anemia, without regard to the number of RBC transfusions.

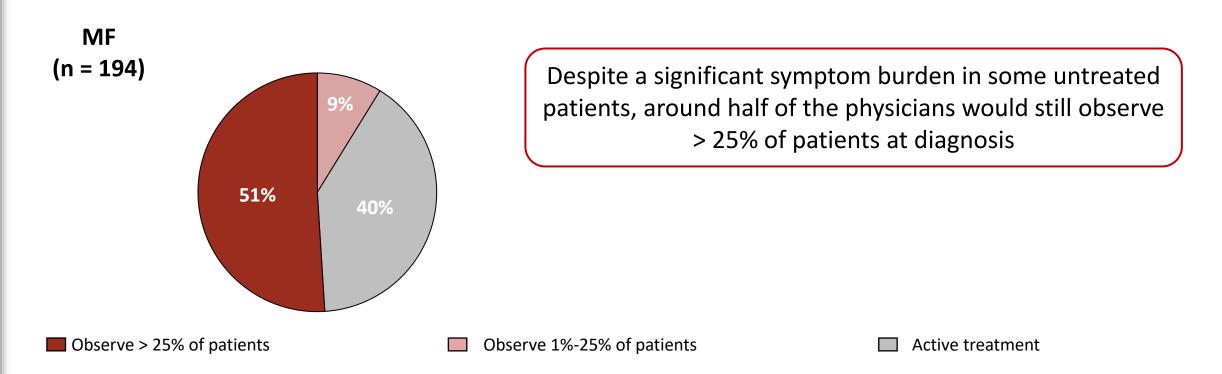
1. Bose P, Verstovsek S. Cancer. 2016;122:681-92; 2. Cervantes F, et al. Blood. 2009;113:2895-2901; 3. Passamonti F, et al. Blood. 2010;115:1703-1708; 4. Gangat N, et al. J Clin Oncol. 2011;29:392-397

Distribution of Myelofibrosis Patients by Different Prognostic Models

Impact of Driver and "High Molecular Risk" Mutations in Primary Myelofibrosis

- Worst prognosis in CALR neg/ASXL1 positive³
- 2 or more HMR mutations also worsens survival⁴

1. Rumi E et al. *Blood*. 2014;124:1062-1069; 2. Vannucchi AM et al. *Leukemia*. 2013;27:1861-9; 3. Tefferi A. et al. *Leukemia*. 2014;28:1472-7; 4. Guglielmelli P, et al. *Leukemia*. 2014;28:1804-10; 5. Lee YC, et al. *Clin Lymphoma Myeloma Leuk*. 2018;18:558-568.


Once we are done with prognostication: "Clinical needs" oriented current therapy for MF

Clinical need	Drugs / Intervention								
Anemia	CorticosteroidsDanazolerythropoietin	ThalidomideLenalidomide							
Symptomatic splenomegaly	 Ruxolitinib, fedratinib Hydroxyurea	Cladribine, IMIDsSplenectomy							
Extramedulary hematopoiesis	Radiation therapy								
Hyperproliferative (early) disease	Interferon, hydroxyurea								
Risk of thrombosis	Low-dose ASA								
Constitutional symptoms/ QoL	 Ruxolitinib, fedratinib Corticosteroids								
Accelerated/blastic Phase	Hypomethylating agents								
Improved survival	 Allo SCT Ruxolitinib								

Barbui T, et al. J Clin Oncol. 2011;29:761-770.

MPN Patient Treatment-Watch and Wait 2016 International Landmark Study

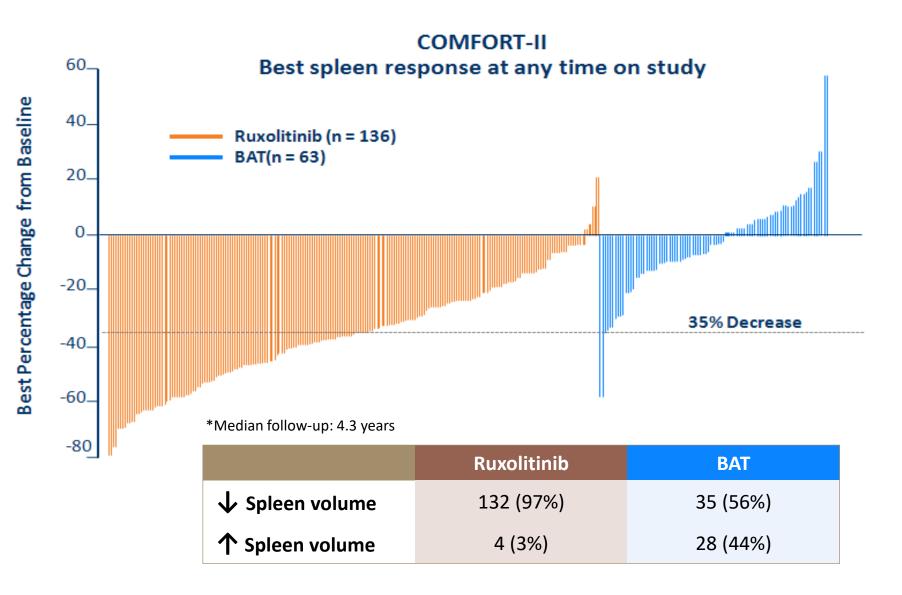
- 23% of patients managed with watch and wait had high to moderate symptom burden
- Only 36% reported not currently experiencing symptoms

MPN10 Total Symptom Score [MPN-SAF]

An easy tool to assess symptoms in MPNs

InflammationSplenomegaly

Anemia


Fatigue Early satiety Abdominal discomfort Inactivity Problems with concentration Night sweats Itching Bone Pain Fever Unintentional weight loss last 6 months MPN10 score υ

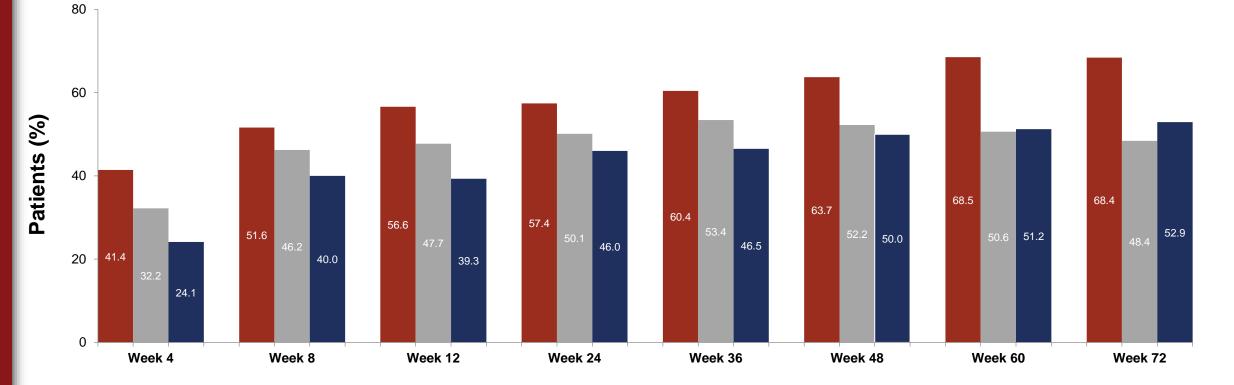
Value	Prognos 1 to 10 ra
0	favorable
0	(Absent)

⊢	ro																					
I	to vor				kir	ng	1 (0	if	at	S	en	ıt;	1 n	n	ost fav	VO	rat	ole	; 1	01	eas
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	lı	ma	gir	na	ble)
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	Ir	ma	gir	na	ble)
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	lı	ma	gir	na	ble)
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	Ir	ma	gir	na	ble)
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	lı	ma	gir	na	ble)
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	lı	ma	gir	na	ble)
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	lı	ma	gir	na	ble)
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	lı	ma	gir	na	ble)
(A	bs	en	t) (0	1	2	3	4	5	6	7	8	9	10	(Worst	Ir	ma	gir	na	ble)

Scherber R, et al. Blood. 2011;118:401-408.

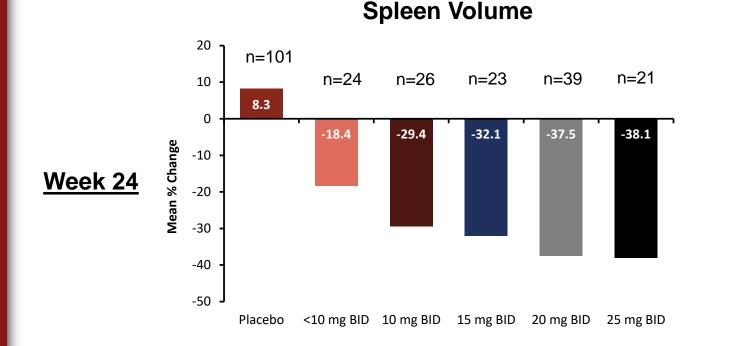
Spleen Volume Response: Ruxolitinib vs. BAT

MF Patient Pre-Ruxolitinib Therapy


Harrison C, et al. N Engl J Med. 2012;366(9):787-98. Images courtesy of Srdan Verstovsek, MD, PhD

JUMP study: lower the risk, better the spleen response to ruxolitinib

- Phase 3b expanded access study
- Enrolled 2,233 patients in 26 countries
- Allowed DIPSS Low-/Int-1-/Int-2-/High-risk MF
- Lower-risk patients received higher starting doses


Spleen length reduction from baseline ≥ 50%

Passamonti F, et al. Poster presented at EHA 2017. Haematologica. 2017;102:abstract E1333.

Ruxolitinib Efficacy by Titrated Dose: COMFORT-I

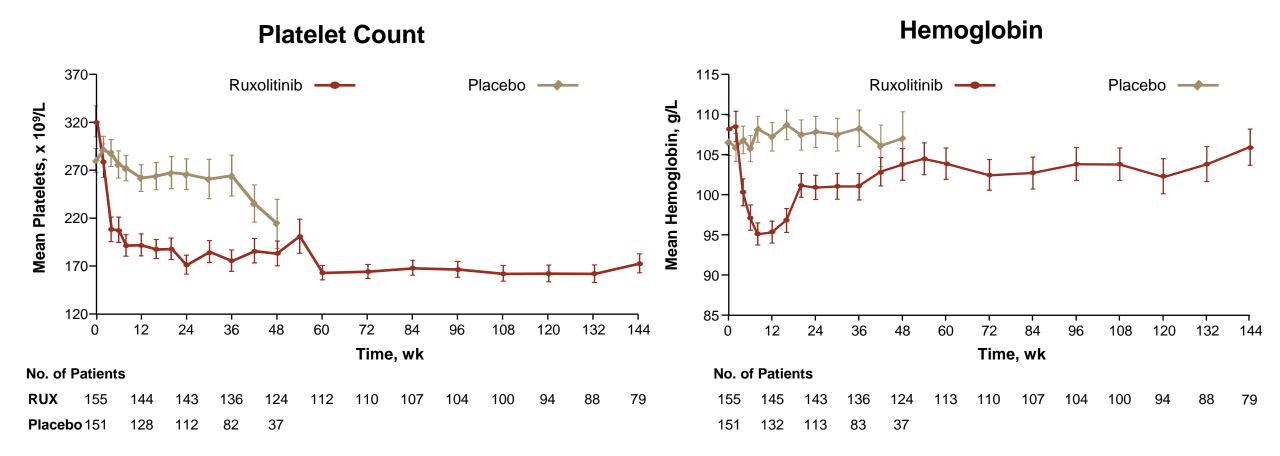
Total Symptom Score 70 n=103 50 30 n=22 n=26 n=23 n=20 n=38 Mean % Change 10 41.8 -11.1 -51.8 -51.4 -56.3 -51.9 -10 -30 -50 -70 Placebo <10 mg BID 10 mg BID 15 mg BID 20 mg BID 25 mg BID

• Avoid starting with low dose!

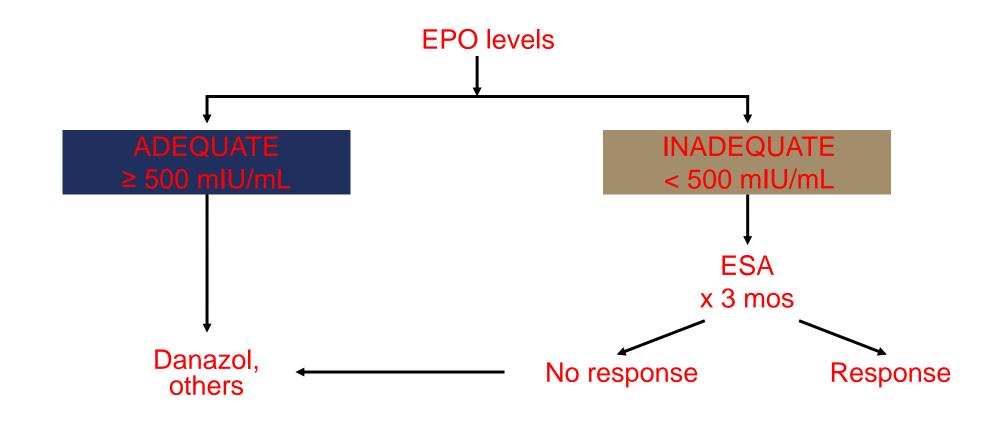
- If starting low then ESCALATE quickly to maximum safe dose
- Doses less than 10mg BID are not effective long term

Verstovsek S, et al. OncoTargets and Therapy. 2014;7:13-21.

Rationale for earlier use of ruxolitinib for MF patients – a retrospective Italian study (N = 408)


The influence of disease stage on quality of response

- Spleen/symptom responses are lower if
 - Time interval between MF diagnosis and start of ruxolitinib > 2 years
 - Larger splenomegaly/higher total symptom score
 - Transfusion dependency/lower PLT count
 - IPSS Int-2/High risk


The influence of ruxolitinib dose

- Early MF patients may tolerate a higher ruxolitinib dose
- Patients starting with higher doses have a higher rate of spleen response
- Use of lower ruxolitinib doses may also result in reduced efficacy

Mean Platelet Count and Hemoglobin over Time COMFORT-I¹

Approach to the Treatment of Anemia in MF

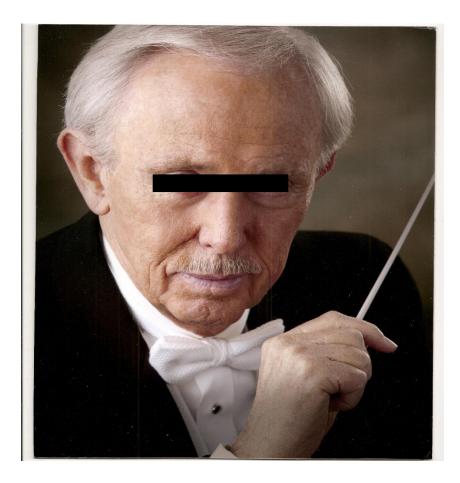
NCCN guidelines, 2017

JAKARTA: Fedratinib for Int-2/High-Risk Myelofibrosis^{1,2}

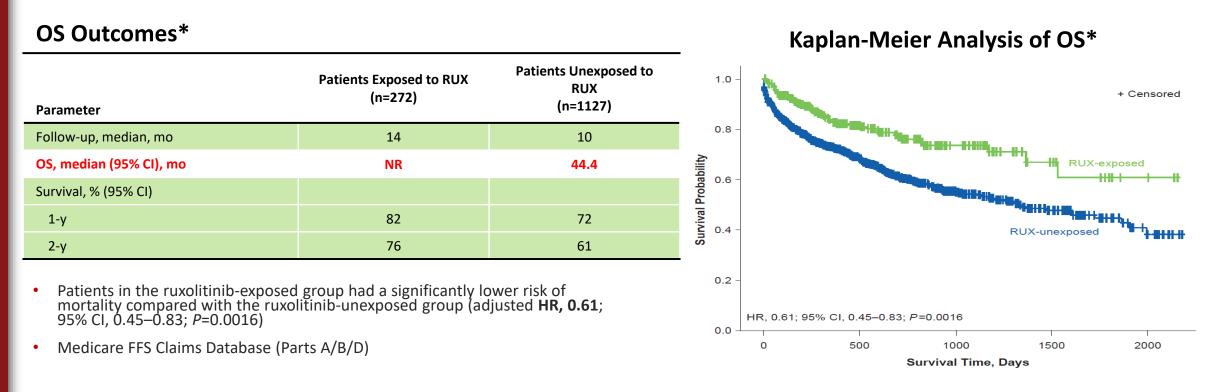
- 289 patients with int-2 or high-risk MF, post-PV MF, or ET MF with splenomegaly
- Fedratinib 500 mg (n = 97); 400 mg (n = 96); or placebo (n = 96) once daily for \geq 6 cycles

Fedratinib 400 mg (recommended dose)*:

- 37% achieved \geq 35% reduction in spleen volume vs. 1% with placebo (p < 0.0001)
- 40% had ≥ 50% reduction in MF-related symptoms, vs. 9% with placebo

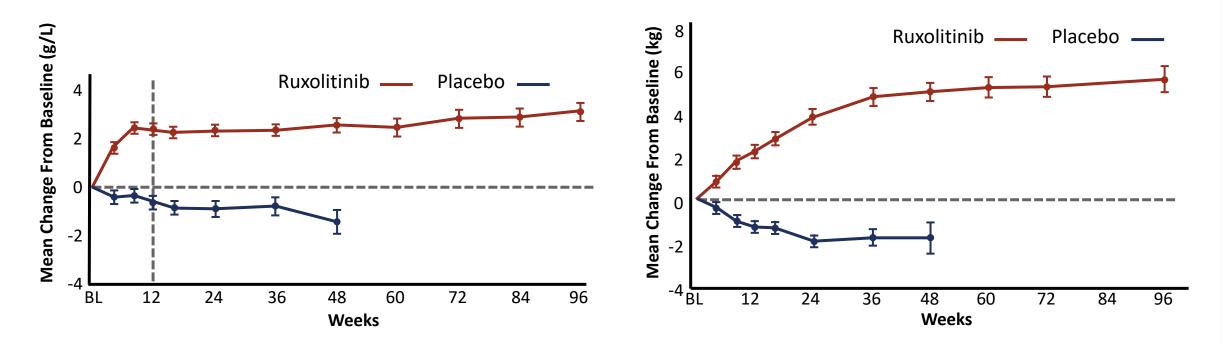

Safety:

- Boxed warning about the risk **Wernicke encephalopathy**
 - Assess thiamine levels in all patients prior to starting fedratinib, periodically during treatment, and as clinically indicated. If encephalopathy is suspected, fedratinib should be immediately discontinued and parenteral thiamine initiated
- The most common adverse reactions were diarrhea, nausea, anemia, and vomiting


*Recommended dose of fedratinib is 400 mg orally once daily (baseline platelet count of ≥50 x 10⁹/L)²

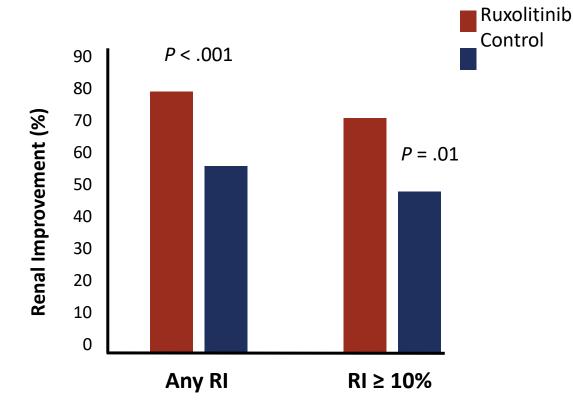
Lets talk about something else...

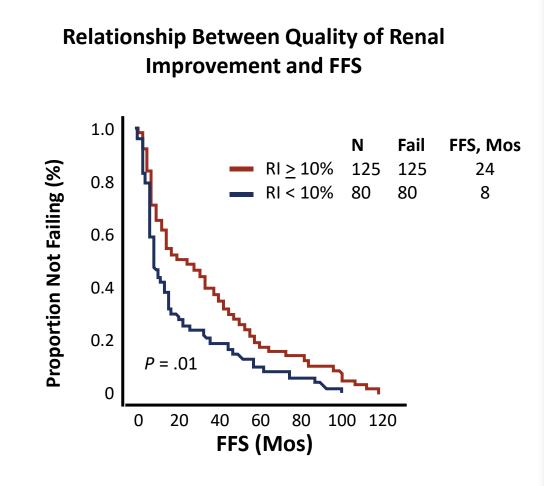
Real-World Survival in Elderly Patients With Myelofibrosis in the United States: Ruxolitinib Exposed vs Unexposed


HR, hazard ratio; NR, not reached.

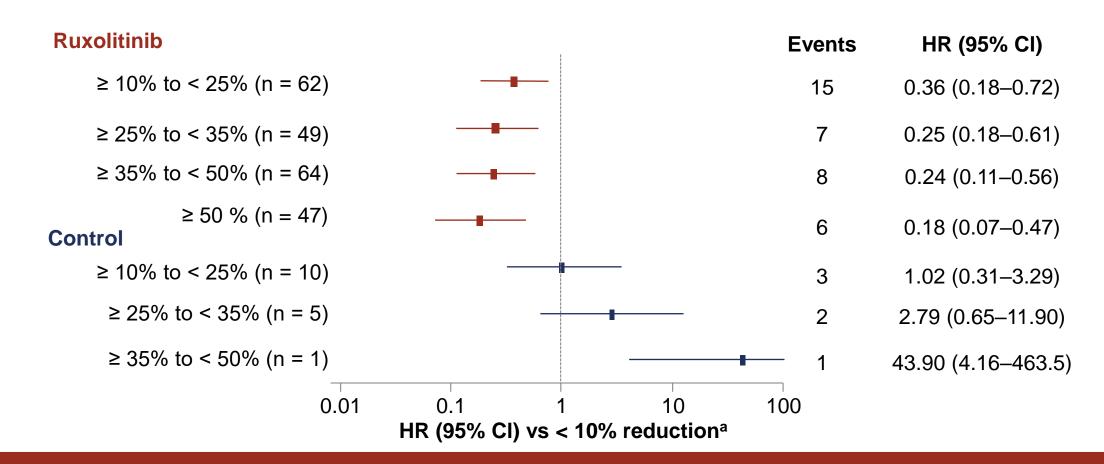
* In patients newly diagnosed with intermediate- or high-risk MF after exclusion of patients with MDS, hematologic malignancies (excluding AML), solid tumors, and AML <12 months before, on, or any time after the index date.

COMFORT-I: Effects of Ruxolitinib on Metabolic and Nutritional Parameters in Patients with MF


Mean Change in Serum Albumin

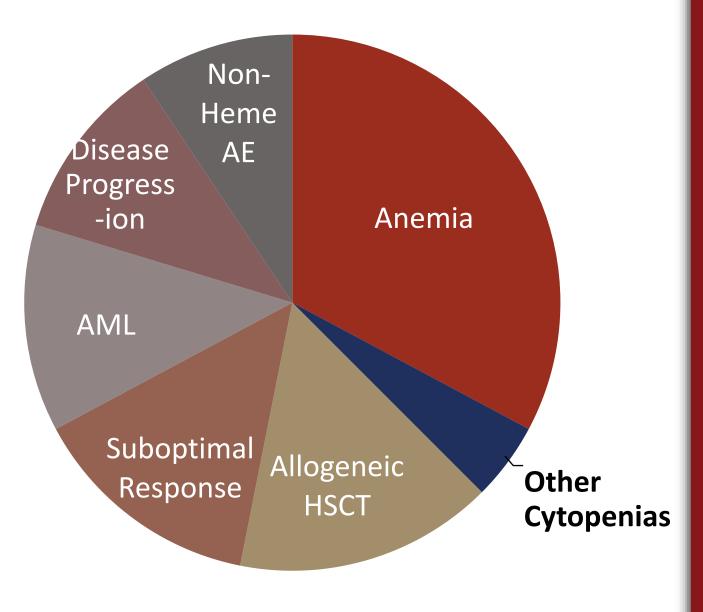

Mean Change in Body Weight

Ruxolitinib Improves Renal Function in MF


Renal Improvement* in Ruxolitinib-Treated Pts vs Matched Controls

*Best percentage change in eGFR during treatment vs baseline.

Pooled analysis COMFORT-I and COMFORT-II: Correlation of spleen volume reduction at Week 24 and OS


"... Each 10% reduction from baseline in spleen length at Week 24 was associated with a 9% reduction in the risk of death for ruxolitinib-treated patients (HR 0.91, 95% CI 0.84–0.99; p = 0.02)..."

Category includes patients with a < 10% reduction from baseline in spleen volume at Week 24 or no assessment (ruxolitinib n = 64; control n = 189); among these patients, there were 26 deaths (events) in the pooled ruxolitinib group and 63 deaths in the control group.

Reproduced from Vannucchi AM, et al. Haematologica 2015;100:1139-45 © 2015, Ferrata Storti Foundation

Reasons for stopping Ruxolitinib

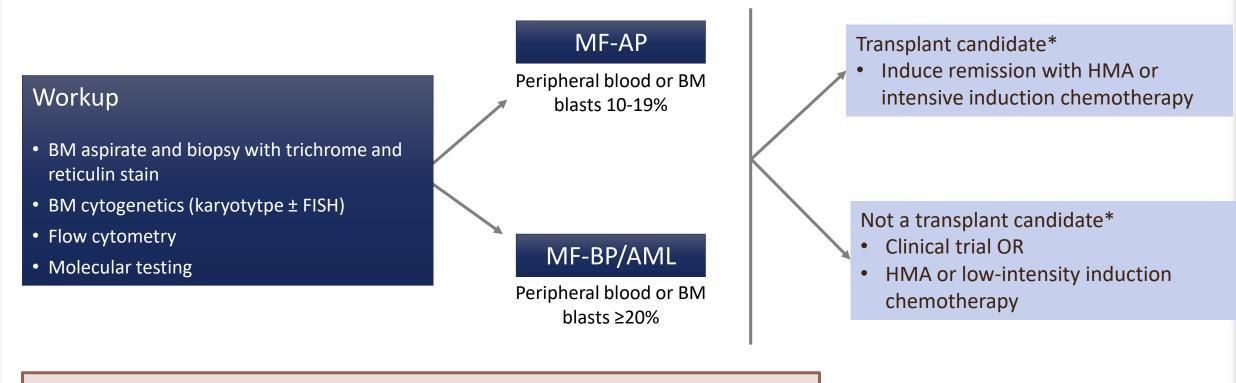
Anemia appears to be the leading cause of ruxolitinib discontinuations

JAKARTA-2: Fedratinib after ruxolitinib Re-Analysis Using More Stringent Criteria for Ruxolitinib 'Failure'

- Reanalysis employed a more stringent definition of RUX failure¹
- 79/97 enrolled patients (81%) met the more stringent criteria for RUX R/R (n = 65, 82%) or intolerance (n = 14, 18%)
- Clinically meaningful reductions in splenomegaly and symptom burden in patients with MF who met more stringent criteria
- SVRR = 30%
- Symptoms RR = 27%
- Safety consistent with prior reports

Ongoing phase III studies of fedratinib in MF patients previously treated with RUX²

FREEDOM


Single group assignment (NCT03755518)

FREEDOM2

Fedratinib vs BAT (NCT03952039)

1. Harrison CN, et al. Am J Hematol. 2020 Mar 4. [Epub ahead of print]; 2. clinicaltrials.gov. Accessed Mar 23, 2020.

NCCN Guideline for Treatment of MF-AP or MF-BP/AML

*Consider ruxolitinib to control splenomegaly and systemic symptoms

MF-AP: myelofibrosis in accelerated phase; MF-BP/AML – myelofibrosis in blast phase or transformation to AML; HMA – hypomethylating agents (azacitidine and decitabine)

Thank You

sverstov@mdanderson.org

Srdan Verstovsek, MD, PhD Professor, Department of Leukemia Division of Cancer Medicine The University of Texas MD Anderson Cancer Center Houston, Texas