
THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

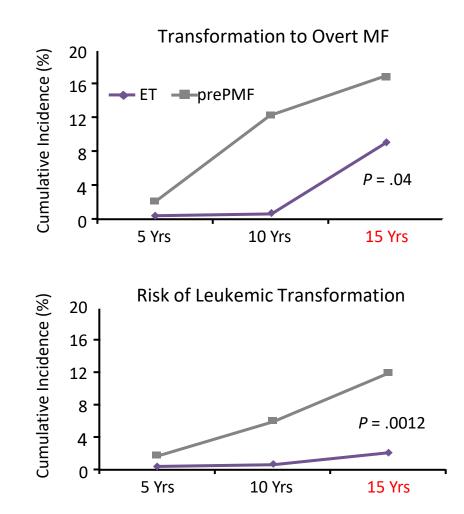
Making Cancer History®

# **Myelofibrosis in 2023**

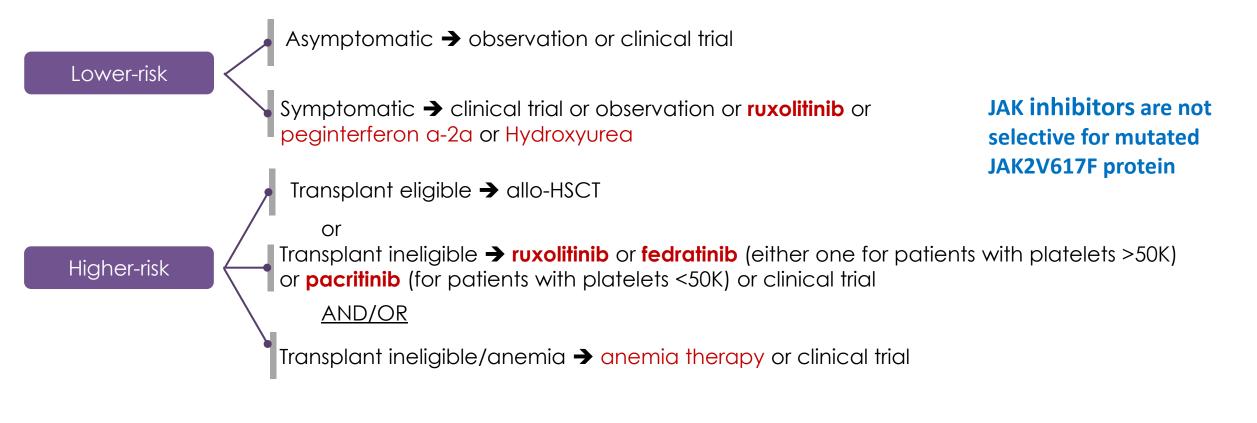
Srdan Verstovsek, M.D., Ph.D. Professor of Medicine, Department of Leukemia University of Texas, MD Anderson Cancer Center Houston, Texas, USA

# **Myelofibrosis: Disease Course and Complications**




#### \*Including cardiovascular events<sup>2</sup>

Abbreviations: EMH, extramedullary hematopoiesis; ET, essential thrombocythemia; PMF, primary myelofibrosis; PS, performance status; PV, polycythemia vera; QOL, quality of life. 1. Mughal TI, et al. *Int J Gen Med*. 2014;7:89-101; 2. Haybar H, et al. *Cardiovasc Hematol Disord Drug Targets*. 2017;17(3):161-166.


# Early/Prefibrotic Primary Myelofibrosis

 International, observational study in which patients with ET or rediagnosed prePMF were followed for disease progression (N = 1,104)





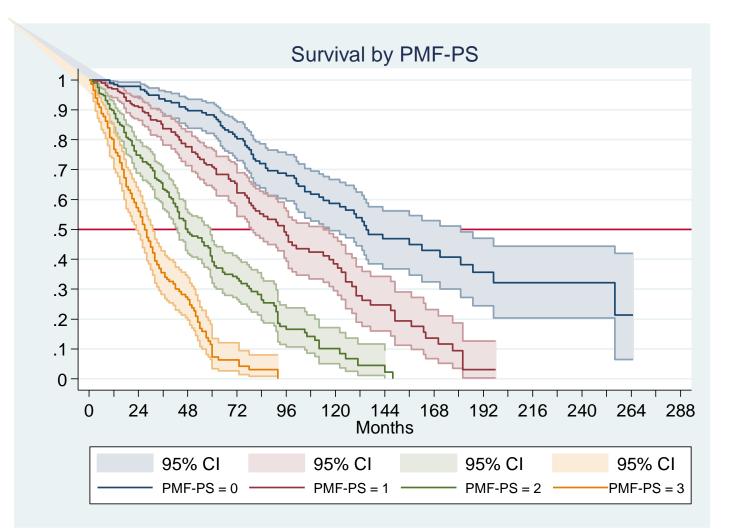
### Simplified NCCN Guidelines for Treatment of MF: Based on Risk and Symptoms/Signs



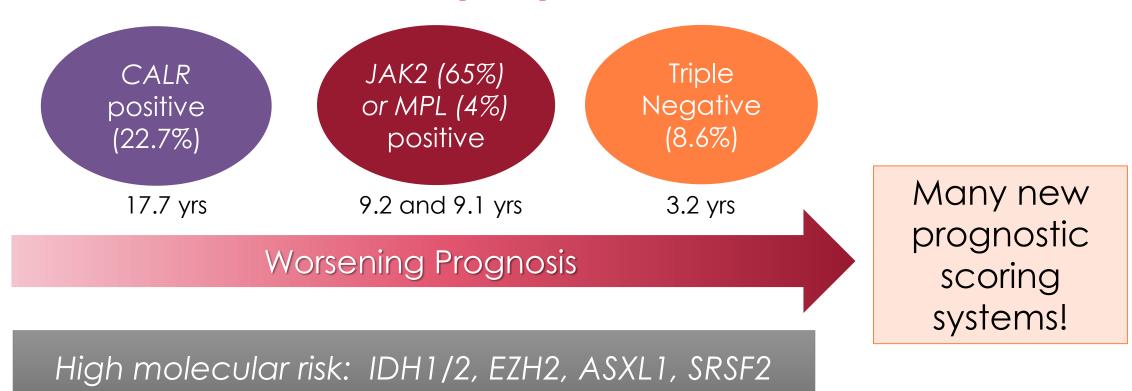
Lower-risk: MIPSS-70  $\leq$  3; MIPPS-70+  $\leq$  3; DIPSS-Plus  $\leq$  1; DIPSS  $\leq$  2; MYSEC-PM <14 Higher-risk: MIPSS-70  $\geq$  4; MIPPS-70+  $\geq$  4; DIPSS-Plus > 1; DIPSS > 2; MYSEC-PM  $\geq$ 14

allo-HSCT, allogeneic hematopoietic stem cell transplantation; DIPSS, Dynamic International Prognostic Scoring System; Int, intermediate; MIPPS: Mutation-Enhanced International Prognostic Score System; MYSEC-PM, Myelofibrosis Secondary to PV and ET-Prognostic Model; NCCN, National Comprehensive Cancer Network.

## International Prognostic Scoring System (IPSS) in Primary Myelofibrosis


**Prognostic factors** 

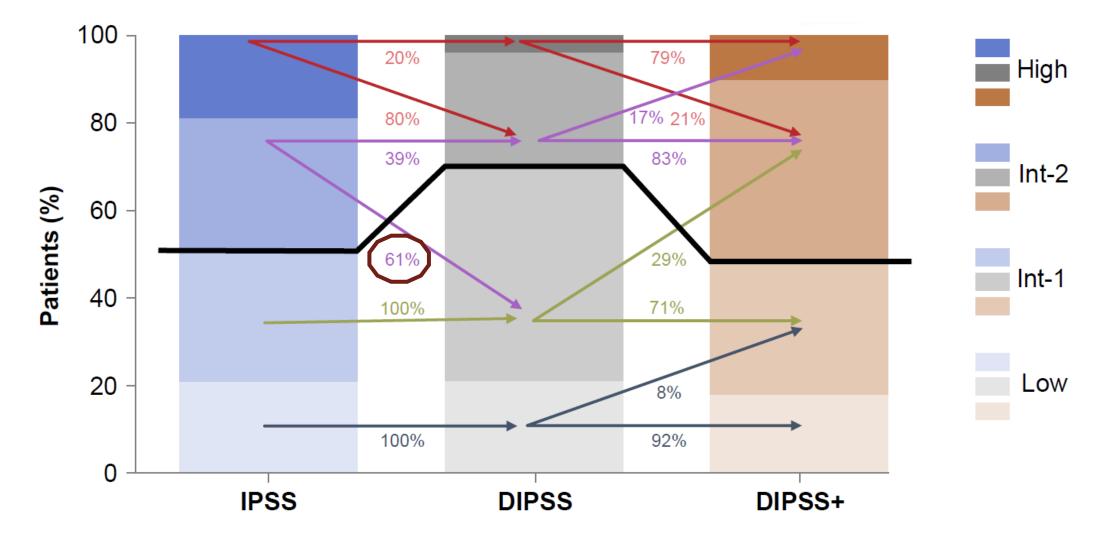
#### Age > 65 years


- Constitutional symptoms
- Hb < 10 g/dL
- Leukocytes > 25 x 10<sup>9</sup>/L
- Blood blasts > 1%

#### Risk group #factors OS (y)

| • Low            | 0             | 11 |
|------------------|---------------|----|
| • Intermediate-1 | 1             | 8  |
| • Intermediate-2 | 2             | 4  |
| • High           | <u>&gt;</u> 3 | 2  |




# Impact of Driver and "High Molecular Risk" Mutations in Primary Myelofibrosis



2 or more HMR mutations also worsen survival

Rumi E et al. Blood. 2014;124:1062-1069; Vannucchi AM et al. Leukemia. 2013;27:1861-9; Guglielmelli P, et al. Leukemia. 2014;28:1804-10.

## Distribution of Myelofibrosis Patients by Different Prognostic Models



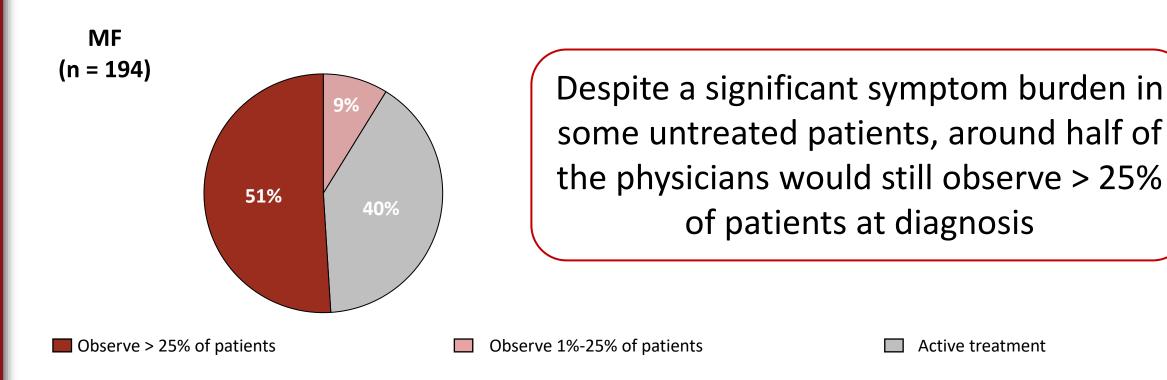
## **MPN10** Total Symptom Score [MPN-SAF]

An easy tool to assess symptoms in MPNs

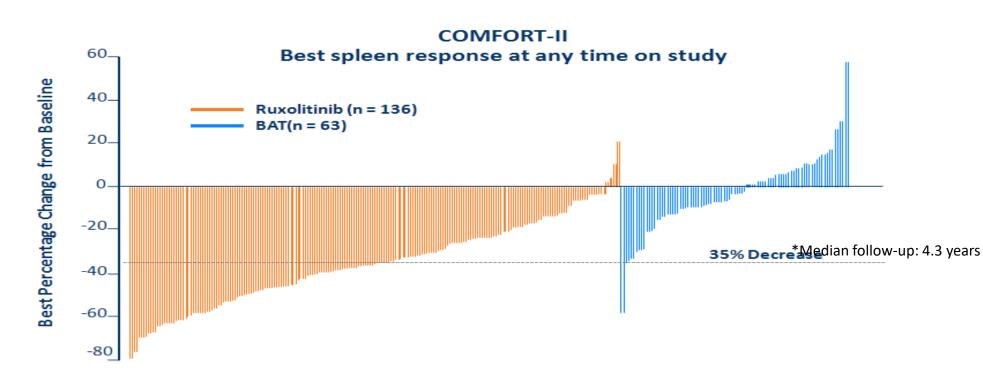
InflammationSplenomegaly

Anemia

Fatigue Early satiety Abdominal discomfort Inactivity Problems with concentration Night sweats Itching Bone Pain Fever Unintentional weight loss last 6 months MPN10 score


| Value | Prognostic<br>1 to 10 ranking |
|-------|-------------------------------|
| 0     | favorable)                    |
| 0     | (Absent) 0 1 2                |
|       |                               |
| 0     |                               |

| Pro          | gno  | st | ic  | ; V | ar | ia   | bl | е  |    |     |     |       |     |                  |
|--------------|------|----|-----|-----|----|------|----|----|----|-----|-----|-------|-----|------------------|
| 1 to<br>favo |      |    | kiı | ng  | (0 | ) if | ał | DS | en | ıt; | 1 n | nosti | fav | vorable; 10 leas |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 45   | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 45   | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 45   | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 45   | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 45   | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 45   | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 45   | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 4 5  | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |
| (Abs         | ent) | 0  | 1   | 2   | 34 | 4 5  | 6  | 7  | 8  | 9   | 10  | (Woi  | rst | Imaginable)      |


Scherber R, et al. Blood. 2011;118:401-408.

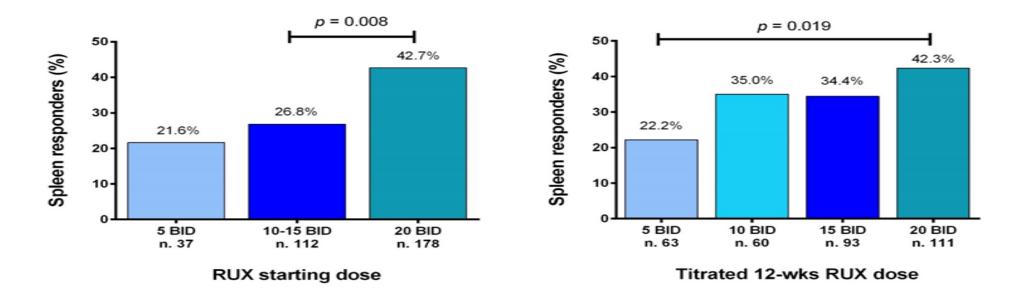
# MPN Patient Treatment-Watch and Wait 2016 International Landmark Study

- 23% of patients managed with watch and wait had high to moderate symptom burden
- Only 36% reported not currently experiencing symptoms



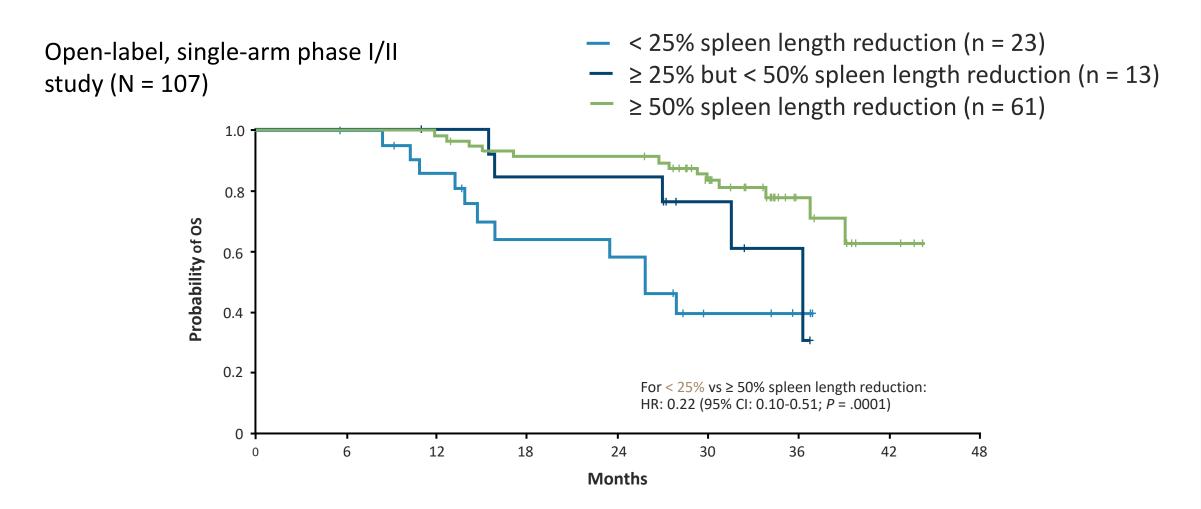
## Myelofibrosis: What are JAK inhibitors for? Spleen and symptoms






MF Patient Pre-Ruxolitinib Therapy

- Dosed based on platelet number (not recommended for platelets <50K)
- It can cause anemia and thrombocytopenia
- Long-term ruxolitinib therapy prolongs survival (earlier intervention and better the spleen response, longer the survival)




## Ruxolitinib Efficacy by Titrated Dose: real-word evidence



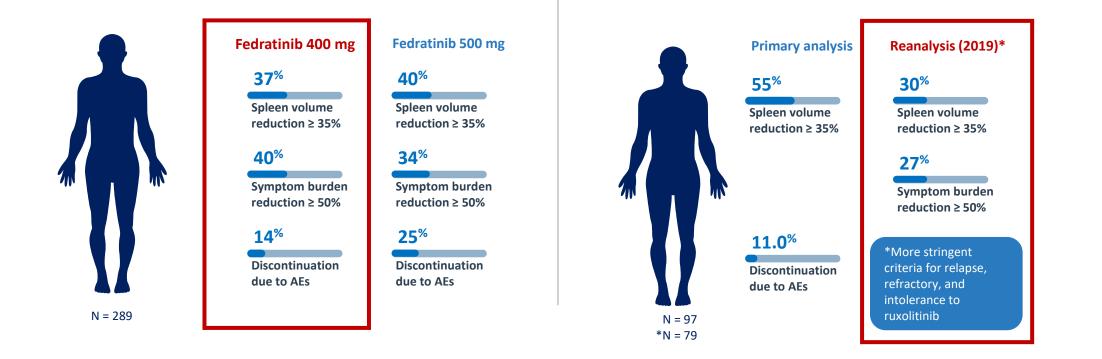
- Phase 2 study and real-world data showed that <u>doses less than</u> <u>10mg BID are not effective long term</u>
- If starting low, ESCALATE quickly to maximum safe dose

## Overall Survival Improves with Spleen Length Reduction in Patients Receiving Ruxolitinib



### Early intervention: Ruxolitinib in IPSS-1 Patients Higher Response Rate and Lower Toxicities

|                         |                   | Clinical Trial                         | Spleen Response<br>at Week 24 | Incidence of Anemia<br>G3/G4 | Incidence of<br>Thrombocytopenia<br>G3/G4 | Incidence of<br>Infections | Discontinuation<br>rate |
|-------------------------|-------------------|----------------------------------------|-------------------------------|------------------------------|-------------------------------------------|----------------------------|-------------------------|
| Int-2 and               | $\int$            | COMFORT-I<br>(n = 155) <sup>1</sup>    | 41.9%                         | 45%                          | 13%                                       | ≈ 50%                      | 21% <sup>6</sup>        |
| high-risk<br>patients   |                   | COMFORT-II<br>(n = 146) <sup>2</sup>   | 32%                           | 42%                          | 8%                                        | ≈ 50%                      | 38%                     |
|                         |                   | JUMP INTM-1<br>(n = 163) <sup>3</sup>  | 56.9%                         | 24.5%                        | 11%                                       | 40%                        | 19.6%                   |
| Int-1- risk<br>patients | $\left\{ \right.$ | ROBUST trial<br>(n = 14) <sup>4</sup>  | 50%                           | NA                           | NA                                        | NA                         | NA                      |
|                         |                   | ltalian study<br>(n = 70) <sup>5</sup> | 54.7%                         | 21.7%                        | 2.9%                                      | 17.1%                      | 17.1%                   |


IPSS intermediate-1 patients may possibly achieve higher reponse rates and experience lower toxicities than patients with higher-risk disease

1. Verstovsek S, et al. N Engl J Med. 2012;366:799-807; 2. Harrison C, et al. N Engl J Med. 2012;366:787-98; 3. Al-Ali HK, et al. Haematologica. 2016;101:1065-73; 4. Mead AJ, et al. Br J Haematol. 2015;170:29-39; 5. Palandri F, et al. Hematol Oncol. 2018;36:285-290; 6. Verstovsek, et al. Haematologica. 2015;100:479-488.

# Fedratinib in Myelofibrosis

**Phase 3 JAKARTA Trial:** Fedratinib vs. placebo in patients with Int-2/high-risk MF <u>first line</u>

Phase 2 JAKARTA-2 Trial: Fedratinib in patients with Int-2/high-risk MF resistant or intolerant to ruxolitinib



AE = Adverse Event; Int-2 = Intermediate-2; Pardanani A, et al. *JAMA Oncol*. 2015;1(5):643–651; Harrison CN, et al. *Lancet Haematol*. 2017;4(7):317–324; Harrison CN, et al. ASCO 2019. Abstract 7057.

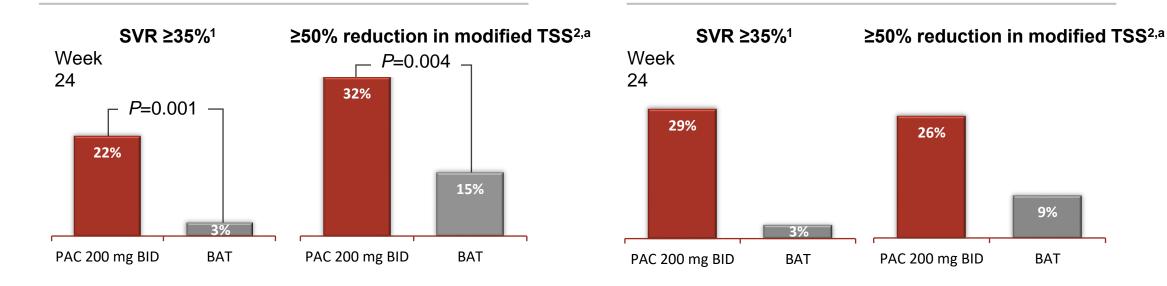
# Fedratinib Adverse Events

| Adverse              | Fedratinib 40 | 00 mg (n = 96) | Fedratinib 50 | 00 mg (n = 97) | Placebo    | o (n = 95)   |  |  |  |
|----------------------|---------------|----------------|---------------|----------------|------------|--------------|--|--|--|
| Event, %             | All Grades    | Grade 3 or 4   | All Grades    | Grade 3 or 4   | All Grades | Grade 3 or 4 |  |  |  |
| Nonhematologic       |               |                |               |                |            |              |  |  |  |
| Diarrhea             | 66            | 5              | 56            | 5              | 16         | 0            |  |  |  |
| Vomiting             | 42            | 3              | 55            | 9              | 5          | 0            |  |  |  |
| Nausea               | 64            | 0              | 51            | 6              | 15         | 0            |  |  |  |
| Constipation         | 10            | 2              | 18            | 0              | 7          | 0            |  |  |  |
| Asthenia             | 9             | 2              | 16            | 4              | 6          | 1            |  |  |  |
| Abdominal<br>pain    | 15            | 0              | 12            | 1              | 16         | 1            |  |  |  |
| Fatigue              | 16            | 6              | 10            | 5              | 1          | 0            |  |  |  |
| Hematologic          |               |                |               |                |            |              |  |  |  |
| Anemia               | 99            | 43             | 98            | 60             | 91         | 25           |  |  |  |
| Thrombocyto<br>penia | 63            | 17             | 57            | 27             | 51         | 9            |  |  |  |
| Lymphopenia          | 57            | 21             | 66            | 27             | 54         | 21           |  |  |  |
| Leukopenia           | 47            | 6              | 53            | 16             | 19         | 3            |  |  |  |
| Neutropenia          | 28            | 8              | 44            | 18             | 15         | 4            |  |  |  |

#### Black box warning

Wernicke's encephalopathy (ataxia, altered mental status, ophthalmoplegia) occurred in 8 of 608 (1.3%) patients receiving fedratinib in clinical trials

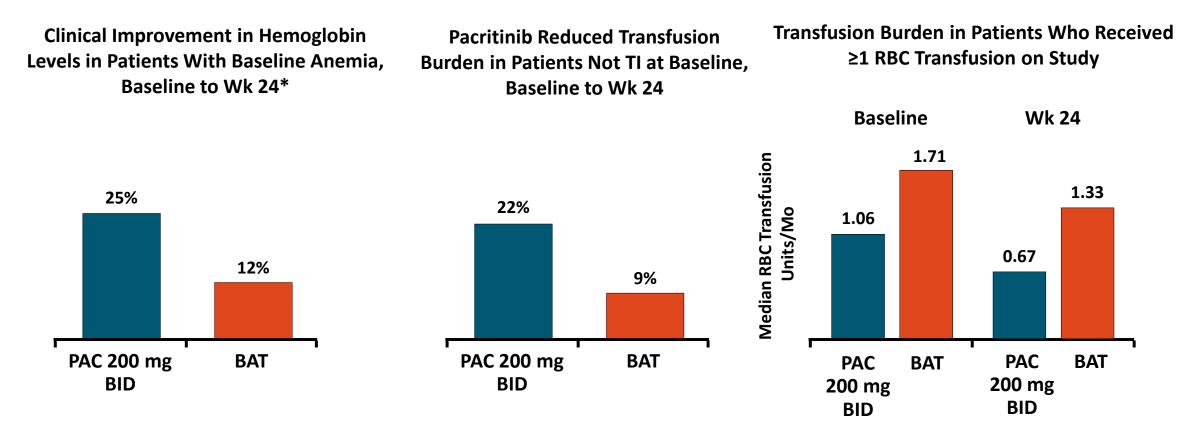
#### Considerations


- Measure and address thiamine levels prior to treatment initiation
- Do not start fedratinib in patients with thiamine deficiency

### Pacritinib vs. BAT in Thrombocytopenic Patients (PERSIST-2)

ITT Population (plts <100x10<sup>9</sup>/L)

Pacritinib received accelerated approval in the US on February 28<sup>th</sup>, 2022 as therapy for MF patients with platelets <50x109/L


#### Patients With Platelets <50x10<sup>9</sup>/L



- PERSIST-2 study: prior JAK2 inhibitor allowed (48%), BAT included ruxolitinib (45%)
- Rarely myelosuppressive
- Causes GI side effects

<sup>a</sup> Excludes individual symptom score for tiredness from MPN-SAF TSS v2.0; utilized in pivotal trials for other JAK inhibitors.
BAT, best available therapy; BID, twice daily; ITT, intention-to-treat; MPN-SAF, myeloproliferative symptom assessment form; PAC, pacritinib; <u>SVR, spleen volume reduction; TSS, total symptom score</u>.
Mascarenhas J, et al. *JAMA Oncol.* 2018;4:652-659. 2. Data on File. CTI Biopharma Corp. Pacritinib Clinical Overview.

# **PERSIST-2: Hematologic Stability/Improvement**

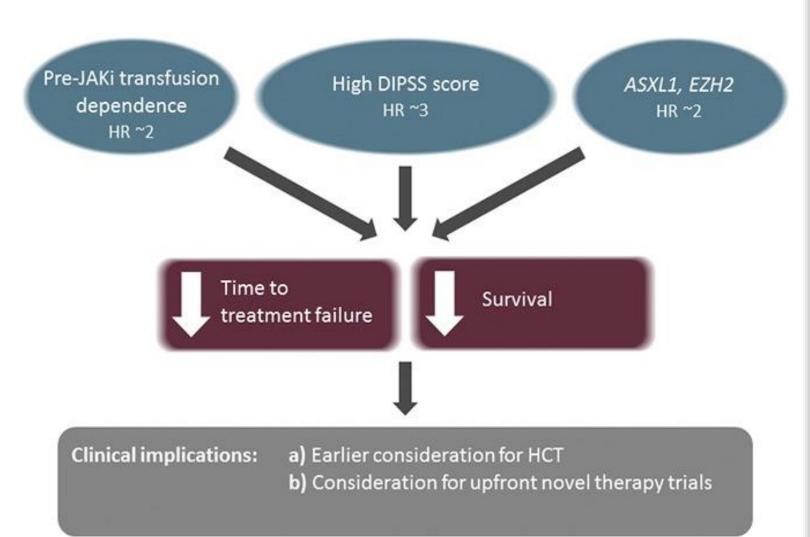


TI defined according to Gale criteria (0 units over the course of 12 wk).

\*International Working Group response criteria: increase of ≥2.0 g/dL or RBC transfusion independence for ≥8 wk prior; anemia defined as hemoglobin <10 g/dL.

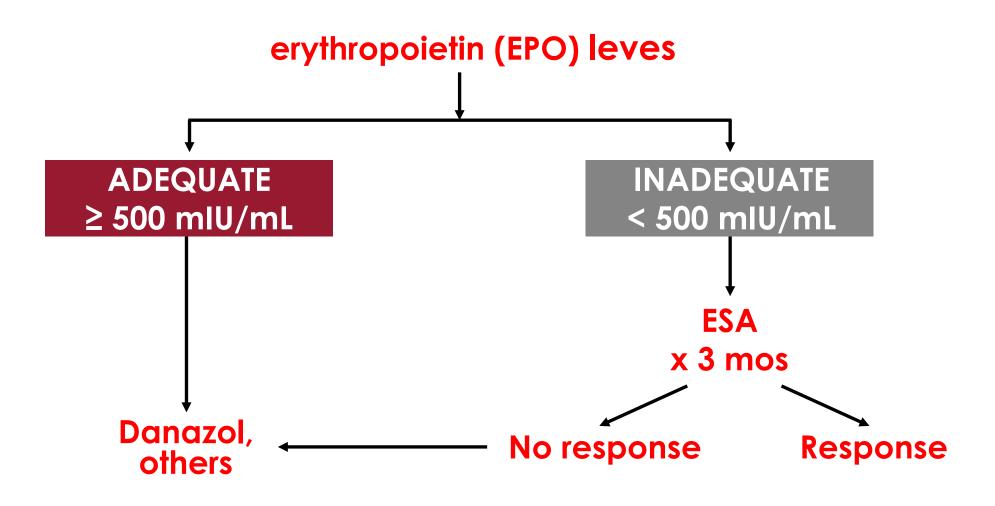
Mascarenhas. JAMA Oncol. 2018;4:652.

# **PERSIST-2: Adverse Events**


| Adverse Reactions                                  | PAC 200 mg BID<br>(n = 106) | BAT<br>(n = 98) |  |  |  |  |  |  |  |
|----------------------------------------------------|-----------------------------|-----------------|--|--|--|--|--|--|--|
| Any-grade AEs in ≥15% of patients in either arm, % |                             |                 |  |  |  |  |  |  |  |
| Diarrhea                                           | 48                          | 15              |  |  |  |  |  |  |  |
| Thrombocytopenia                                   | 34                          | 23              |  |  |  |  |  |  |  |
| Nausea                                             | 32                          | 11              |  |  |  |  |  |  |  |
| Anemia                                             | 24                          | 15              |  |  |  |  |  |  |  |
| Peripheral edema                                   | 20                          | 15              |  |  |  |  |  |  |  |
| Vomiting                                           | 19                          | 5               |  |  |  |  |  |  |  |
| Fatigue                                            | 17                          | 16              |  |  |  |  |  |  |  |

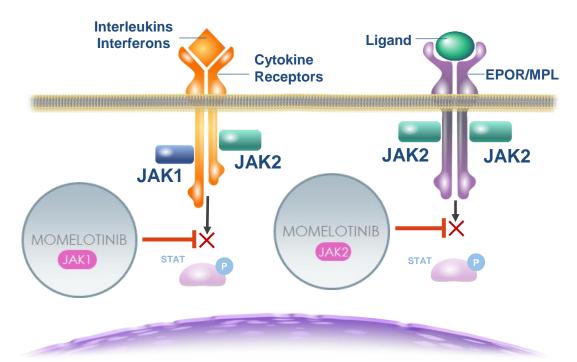
- Diarrhea with pacritinib most often occurred during Wk 1-8, was manageable, and resolved within 1-2 wk
- Neurologic AEs and opportunistic infections rarely reported with pacritinib
- Safety outcomes with pacritinib were similar for those with baseline platelets <50 x 10<sup>9</sup>/L vs 50-100 x 10<sup>9</sup>/L

# Impact of Patients Characteristics on Outcomes in Patients Treated With JAK1/JAK2 Inhibitor Therapy

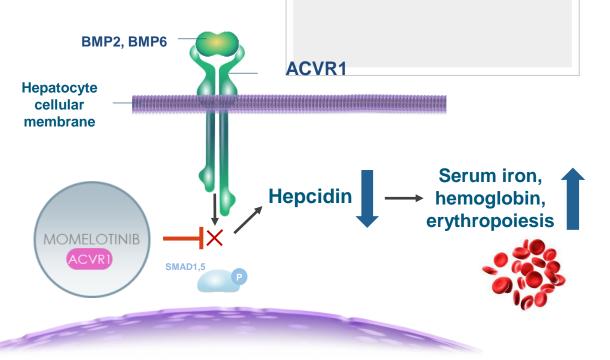

MF patients treated with JAK1/2 inhibitor therapy

Transfusion dependence, high risk score and **ASXL1/EZH2** mutations predict shorter time to failure in MF patients receiving JAK1/JAK2 inhibitor treatment.




Spiegel JY, et al. Blood Adv. 2017;1(20):1729-1738.

# Approach to the Treatment of Anemia in MF




NCCN guidelines

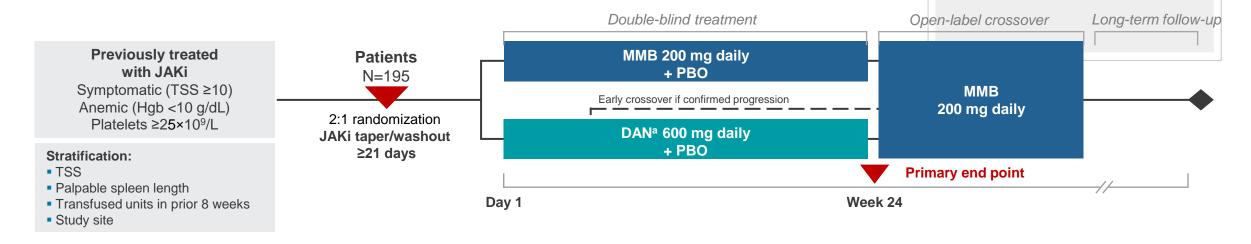
# Momelotinib Inhibits JAK1, JAK2, and ACVR1 to Address MF Symptoms, Spleen, and Anemia



Dysregulated **JAK-STAT signaling** in MF drives overproduction of inflammatory cytokines, **bone marrow fibrosis**, **systemic symptoms**, and clonal proliferation resulting in extramedullary hematopoiesis and **splenomegaly**<sup>1,2</sup>



Place video here


Chronic inflammation also drives hyperactivation of **ACVR1**, elevated **hepcidin**, dysregulated iron metabolism, and **anemia** of MF<sup>3,4</sup>

ACVR1, activin A receptor type 1; BMP, bone morphogenetic protein; EPOR, erythropoietin receptor; JAK, Janus kinase; MF, myelofibrosis; MPL, myeloproliferative leukemia protein; SMAD1/5, mothers against decapentaplegic homolog 1/5; STAT, signal transducer and activator of transcription. 1. Chifotides HT, et al. J Hematol Oncol. 2022;15(1):7. 2. Verstovsek S, et al. Future Oncol. 2021;17(12):1449-1458. 3. Asshoff M, et al. Blood. 2017;129(13):1823-1830. 4. Oh ST, et al. Blood Adv. 2020;4(18):4282-4291.



### MOMENTUM Is an Ongoing Phase 3 Study of Momelotinib Versus DAN in Symptomatic, Anemic, JAKi-Experienced Patients

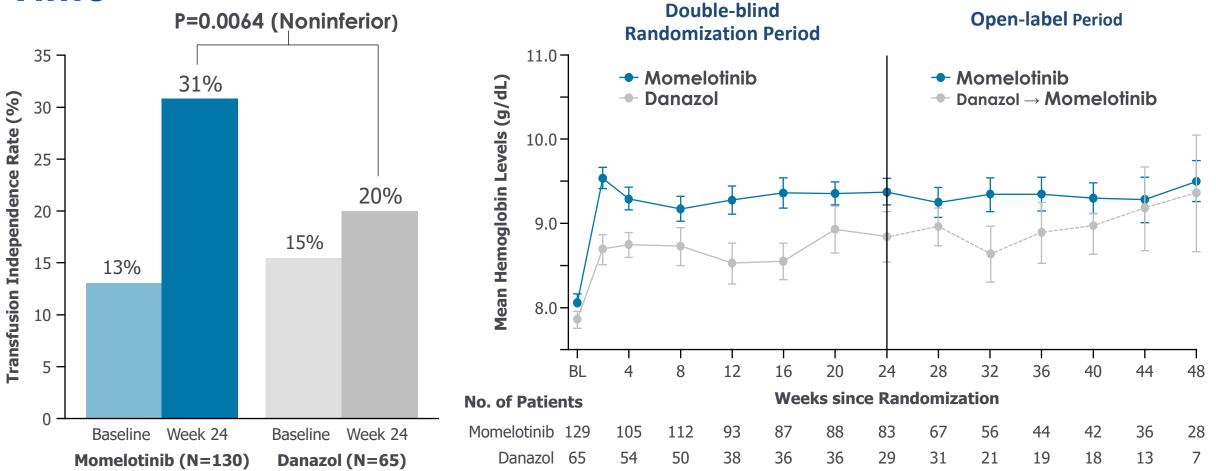
Place video here



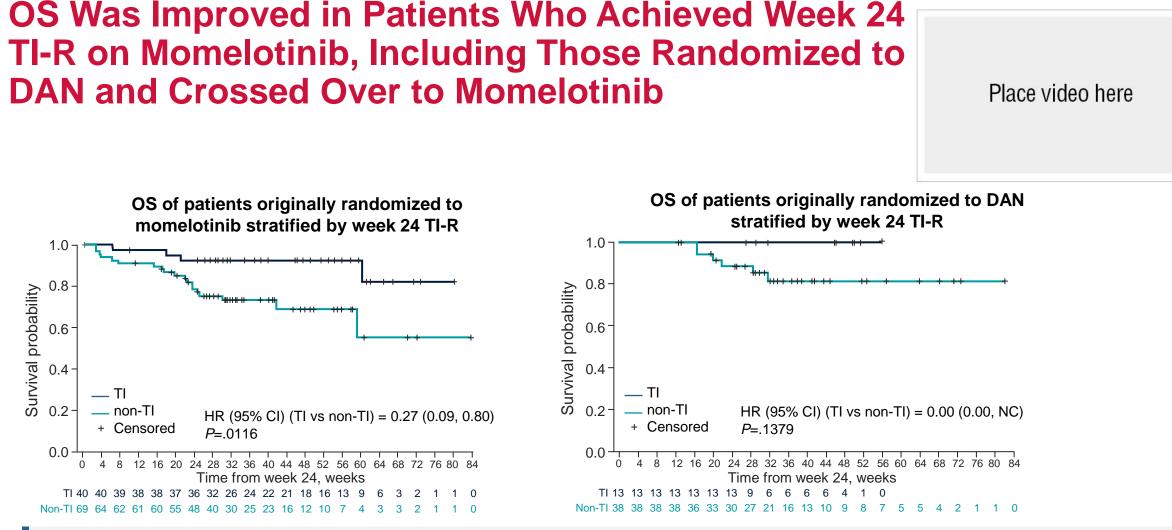
#### MOMENTUM Topline Results at Week 24: All Primary and Key Secondary End Points Met<sup>1,2</sup>

|             | MFSAF TSS <sup>♭</sup> response rate<br>(primary end point) | TI response <sup>c</sup> rate | SRR <sup>d</sup> (35% reduction) |
|-------------|-------------------------------------------------------------|-------------------------------|----------------------------------|
| MMB (N=130) | 32 (24.6%)                                                  | 40 (30.8%)                    | 30 (23.1%)                       |
| DAN (N=65)  | 6 (9.2%)                                                    | 13 (20.0%)                    | 2 (3.1%)                         |
|             | <i>P</i> =.0095 (superior)                                  | 1-sided P=.0064 (noninferior) | <i>P</i> =.0006 (superior)       |

#### ClinicalTrials.gov: NCT04173494.


<sup>a</sup>Danazol was selected as an appropriate comparator given its use to ameliorate anemia in patients with MF.<sup>35</sup> <sup>b</sup>TSS response defined as achieving ≥50% reduction in TSS over the 28 days immediately before the end of week 24 compared with baseline. <sup>c</sup>TI response defined as not requiring red blood cell transfusion in the last 12 weeks of the 24-week randomized period, with all Hgb levels during the 12-week interval of ≥8 /dL. <sup>4</sup>SRR defined as achieving a ≥25% or ≥35% reduction in spleen volume from baseline.

DAN, danazol; FPE, first patient enrolled; Hgb, hemoglobin; JAKi, Janus kinase inhibitor; LPE, last patient enrolled; MF, myelofibrosis; MFSAF, Myelofibrosis Symptom Assessment Form; MMB, momelotinib; PBO, placebo; SRR, splenic response rate; TI, transfusion independence; TSS, total symptom score.


1. Mesa R, et al. Abstract presented at: 2022 ASCO Annual Meeting; June 3-6, 2022; Chicago, IL and Virtual. Abstract 7002. 2. Verstovsek S, et al. Abstract presented at: 2022 EHA Congress; June 9-12; 2022; Vienna, Austria and Virtual. Abstract S195. 3. Chifotides HT, et al. J Hematol. Oncol. 2022;15(1):7. 4. Naymagon L, et al. Hemasphere. 2017;1(1):e1. 5. Vannucchi AM, et al. Ann Oncol. 2015;26(suppl 5):v85-v99.



### MOMENTUM: Momelotinib vs Danazol Transfusion Independence at Week 24, Mean Hemoglobin Over Time



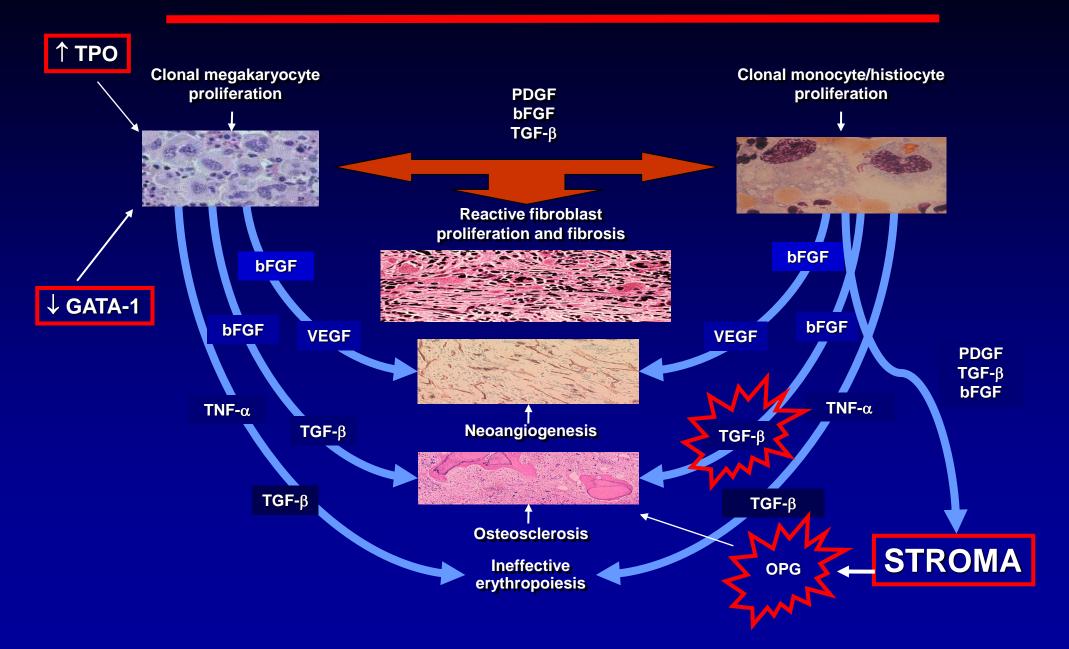
\*Defined as not requiring red blood cell transfusion in the terminal 12 weeks of the 24-week randomized period, with all hemoglobin levels during the 12-week interval of  $\geq 8 \text{ g/dL}$ .



For those patients randomized to momelotinib achieving week 24 TI-R, OS was significantly improved, consistent with observations in the SIMPLIFY studies

Patients randomized to DAN achieving week 24 TI-R who then crossed over to momelotinib also trended toward longer OS

DAN, danazol; HR, hazard ratio; NC, not calculable; OL, open-label; OS, overall survival; TI, transfusion independence; TI-R, transfusion independence response; TR, transfusion-requiring.


### American Society of Hematology



# Novel Therapies for Myeloproliferative Diseases

Srdan Verstovsek, M.D., Ph.D. Assistant Professor Department of Leukemia M. D. Anderson Cancer Center

# **MF: Treatment Targets**



# **Future Directions in MPDs**

- Thalidomide + prednisone based combinations (with etanercept, or imatinib, or cytoxan)
- Thalidomide analogs (CC-5013) +/- prednisone
- Proteasome inhibitors (bortezomib)
- Hypomethylation agents (decitabine, azacitidine)
- Gleevec and PEG Intron
- Tyrosine kinase inhibitors of c-kit, PDGFR A and B

# 4/2008



# 4/2021



# Thank You

# sverstov@mdanderson.org

Srdan Verstovsek, MD, PhD

Professor, Department of Leukemia

**Division of Cancer Medicine** 

The University of Texas MD Anderson

**Cancer Center** 

Houston, Texas