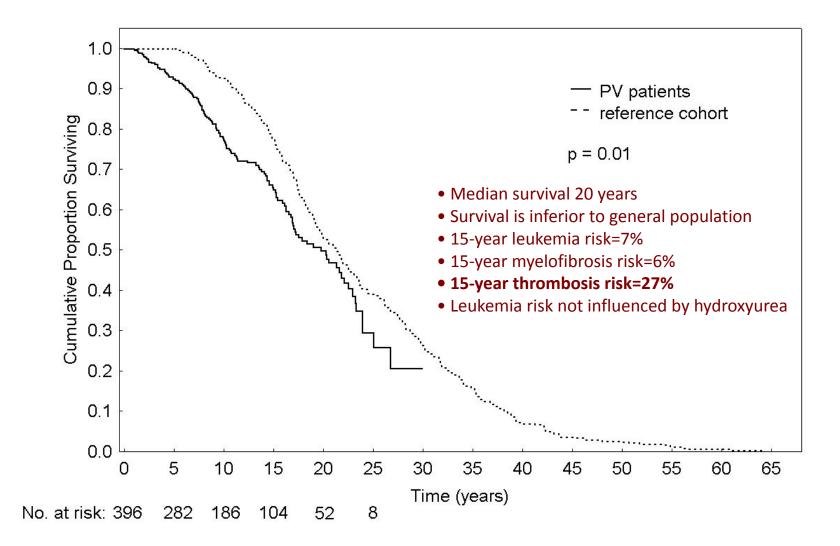
Updates and Future Directions in Polycythemia Vera

Raajit K. Rampal M.D. Ph.D Associate Member Director, Program in Myeloproliferative Neoplasms and Rare Hematologic Malignancies Director, Center for Hematologic Malignancies Memorial Sloan Kettering Cancer Center



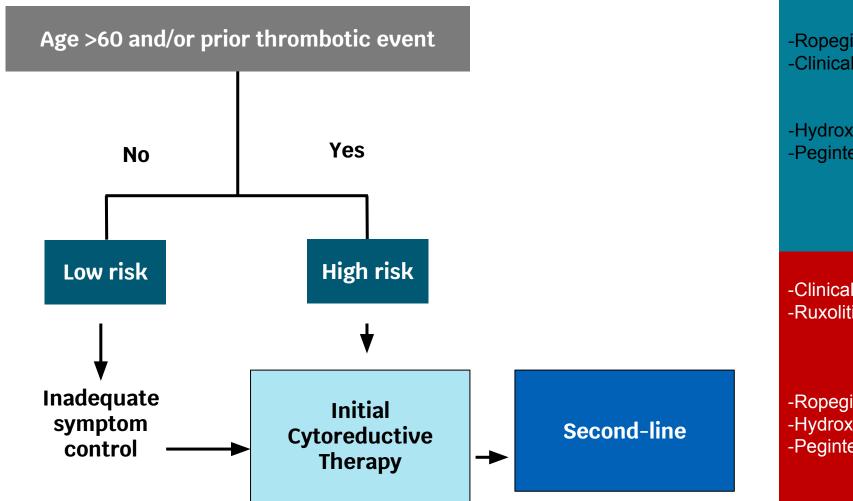
Memorial Sloan Kettering Cancer Center

How do Approach the treatment of Polycythemia Vera in 2025?

How *might* we approach the treatment of Polycythemia Vera beyond 2025

MODERN NATURAL HISTORY OF PV

Therapy and goals in PV


Goals of therapy

- Reduce symptoms burden
- Decrease risk of thrombotic events

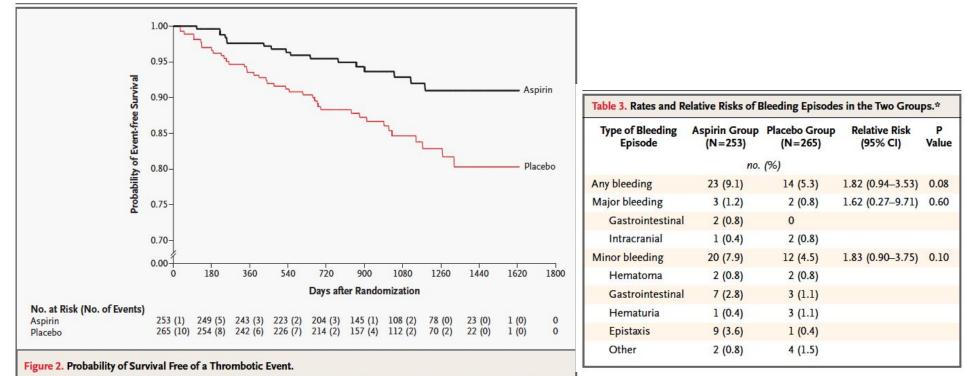
Therapeutic modalities

- Therapeutic phlebotomy
- Cytoreductive therapies: hydroxyurea (HU), Interferon
- JAK inhibitors: ruxolitinib
- Antithrombotic modalities: Aspirin, lifestyle modification

Polycythemia Vera: Risk stratification and NCCN Guidelines

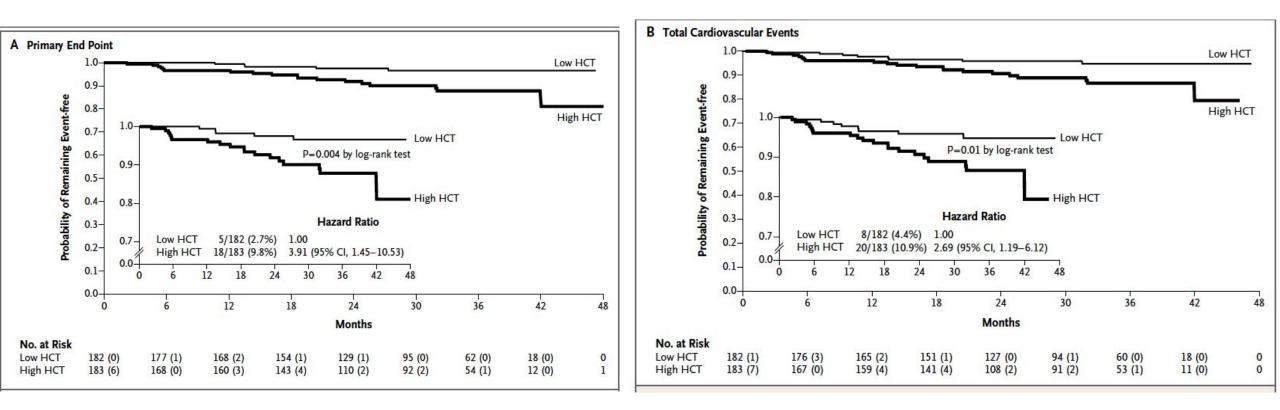
Low Risk- NCCN Preferred -Ropeginterferon-Alfa 2b -Clinical Trial

Other recommended


-Hydroxyurea -Peginterferon alfa-2a

High Risk- NCCN Preferred -Clinical Trial -Ruxolitinib (For HU resistance/intolerance)

Other recommended (if not used previously) -Ropeginterferon-Alfa 2b -Hydroxyurea -Peginterferon-alfa-2a


Double-blind placebo controlled trial of ASA (100mg) in PV patients

The analysis was performed according to the intention-to-treat principle. The relative risk of a thrombotic event in the aspirin group, as compared with the placebo group, was 0.42 (95 percent confidence interval, 0.24 to 0.74; P=0.002 by the log-rank test).

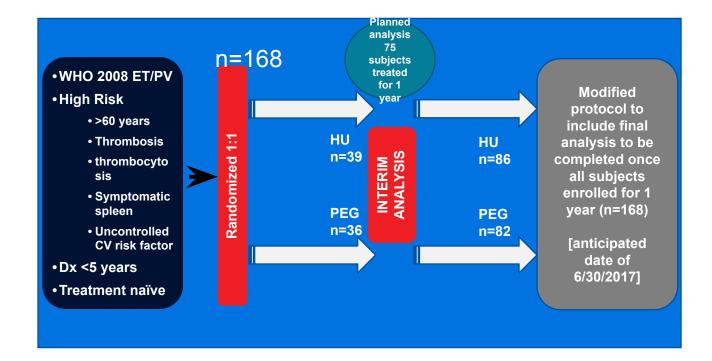
Therapeutic Phlebotomy: what is the optimal goal?

Low hematocrit group (<45%) Versus high hematocrit group (45-50%)

Elevated Hct between 45% and 50%: 4-fold higher rate of cardiovascular death and major thrombosis¹

 A significant increase in the risk of cardiovascular death and major thrombosis was demonstrated with Hct levels between 45% and 50% compared with Hct levels of <45% (HR, 3.91; 95% Cl, 1.45-10.53; P=0.007)^{1*} Is this this optimal HCT goal for women? Is <42% more appropriate?

Hydroxyurea for Cytoreduction in Pts With PV


Study/Organization	Pts, N	Intervention	Comparator	Thrombosis
French PV Study Group ^[1]	292 < 65 yrs (median FU: 7 yrs)	HU (randomized)	Pipobroman	No significant difference
French PV Study Group ^[2]	285 (median FU: 16 yrs)	HU (randomized)	Pipobroman	No significant difference
PV cohort of ECLAP study ^[3]	1042 (median FU: ~ 30-35 mos)	HU (propensity matching)	Phlebotomy	CV events/100 PY: HU: 3.0 Phlebotomy: 5.8
Retrospective study ^[4]	235 with thrombosis history	Cytoreduction; 77% received HU	None	Cytoreduction reduced recurrence rates

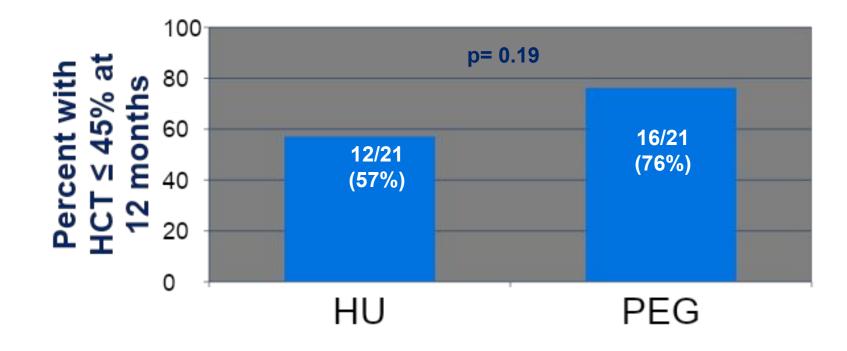
 Najean Y, et al. Blood. 1997;90:3370-3377. 2. Kiladjian JJ, et al. J Clin Oncol. 2011;29:3907-3913.
 Barbui T, et al. Am J Hematol. 2017;92:1131-1136. 4. De Stefano V, et al. Haematologica. 2008;93:372-380.

PegIFN for Pts With PV

Study	Population	Findings
PVN ^[1,2] • PegIFN α-2a	 N = 37 Newly diagnosed pts 	 CHR: 95%; CR: 82% in extended FU 0 thromboembolic events in 6 yrs CMR: 8 (28%); sustained improvements after d/c of treatment Grade 1/2 AEs: 89%; d/c for toxicity (1 yr): 24%
MDACC ^[3,4] • PegIFN α-2a	 N = 43 ~ 50% previous cytoreductives Median FU: 83 mos 	 Median response duration: hematologic: 65 mos; molecular: 58 mos Failure to achieve CMR: more likely to have/acquire nondriver mutations Thrombosis and progression can occur Toxicity continued over time (new grade 3/4 events in 10% to 17% of PY); d/c for AEs: 22%
PEGINVERA ^{[5,} ^{6]} RopegIFN α-2b	 N = 51 HU pretreated: 33% Median FU: 80 wks 	 CR: 43% to 57%; PR: 43%; CMR: 21% 1 TIA, 1 DVT during study period AEs (any): 88%; d/c for AEs: 20%

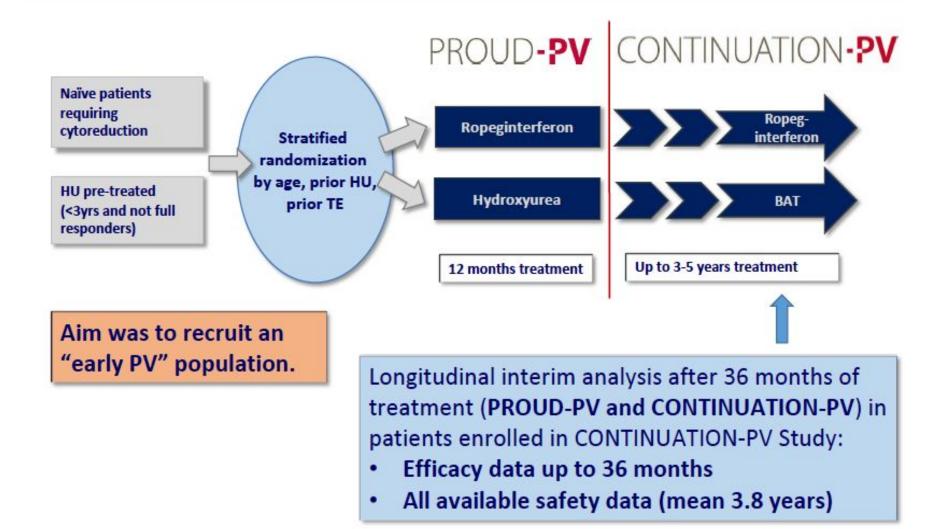
MPD-RC 112 Study

MPD-RC 112: First-line PegIFN α-2a vs HU for High-Risk PV and Essential Thrombocythemia

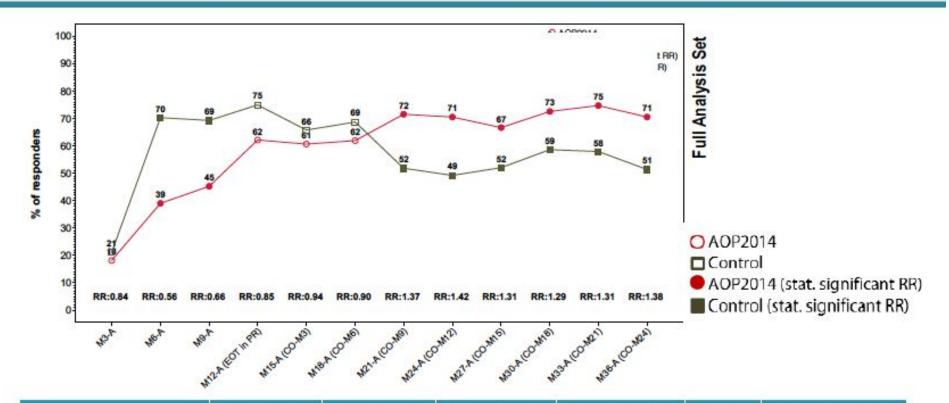

Interim Analysis: Overall Response Rates at 12 Months

	Hydı	roxyurea (n	= 39)	Pegl	FN α-2a (n	= 36)	<i>P</i> value
	PR n (%)	CR n (%)	ORR n (%)	PR n (%)	CR n (%)	ORR n (%)	
Entire cohort (n = 75)	14 (36)	13 (33)	27 (69)	19 (53)	10 (28)	29 (81)	0.6*
PV (n = 44)	10/23 (44)	6/23 (26)	16/23 (70)	13/21 (62)	4/21 (19)	17/21 (81)	0.6
ET (n = 31)	4/16 (25)	7/16 (44)	11/16 (69)	6/15 (40)	6/15 (40)	12/15 (80)	0.8

*CR comparison based on z-test; did not cross stopping boundary. CR, complete response; PR, partial response; ORR, overall response rate


AE,† n (%)	Hydroxyurea (n = 36)	PegIFN α-2a (n = 36)	P Value
AE grade ≥ 3	5 (14)	17 (47)	.002
Depression	0	10 (28)	< .001
Dyspnea	1 (3)	7 (19)	.02
Fatigue	10 (28)	18 (50)	.05
Flulike symptoms	1 (3)	12 (33)	< .001
Injection-site reaction	0	9 (25)	.001
Pruritus	3 (8)	10 (28)	.03

HCT Control in PV Patients by Treatment Arm (at 12 months or last visit)



Ropeginterferon alfa-2b phase III development in PV: PROUD-PV and CONTINUATION-PV Studies

Complete hematologic response (CHR)

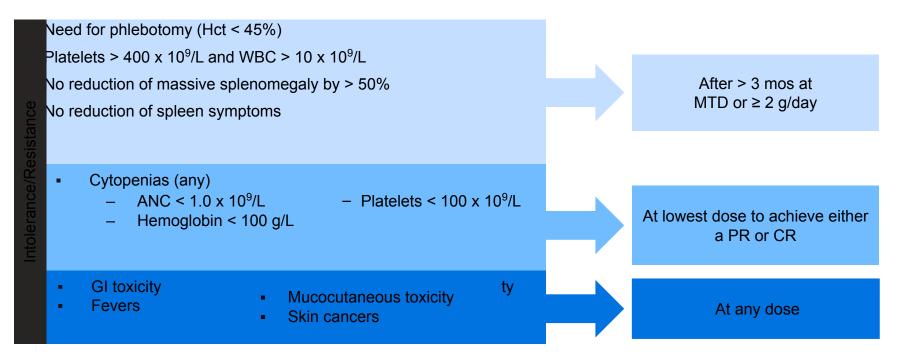
Study Month	Responder/N	Responder %	Responder/N	Responder %	P-value	RR [95% CI] (AOP2014/Control)
	Ropeg	(N=95)	Contro	l (N=76)		
MONTH 12 (EOT in PR)	59/95	62.1	57/76	75.0	0.1201	0.85 [0.70-1.04]
MONTH 24	67/95	70.5	33/67	49.3	0.0111	1.42 [1.08-1.87]
MONTH 36	67/95	70.5	38/74	51.4	0.0122	1.38 [1.07-1.79]

PROUD-PV and CONTINUATION-PV: Safety

Most Common Grade 3/4 TRAEs w/ Ropeg:

- ↑ γ-glutamyltransferase (6%, n=7)
- ↑ alanine aminotransferase (3%, n=4)

Treatment-related serious AEs:


- Ropeg (2%, n=3) vs control 4% (n=5)
- 1 treatment-related death reported in standard therapy group (acute leukaemia)

AEs of Special Interest

	Ropeginterferon alfa-2b (N=127)	Control (N=127)
Endocrine disorders		
Any adverse event	8 (6%)	2 (2%)
Related to treatment	6 (5%)	0
Psychiatric disorders		
Any adverse event	5 (4%)	6 (5%)
Related to treatment	2 (2%)	1 (1%)
Musculoskeletal and connective tissue disor	rders	
Any adverse event	2 (2%)	0
Related to treatment	2 (2%)	0
Major cardiovascular and major thromboen	nbolic adverse events	
Any major cardiovascular adverse event	13 (10%); 16 events	8 (6%); 25 events
Major thromboembolic adverse event	4 (3%); 6 events	4 (3%); 4 events
Neoplasms benign, malignant and unspecif	fied (including cysts and polyps)	
Any neoplasm	9 (7%); 11 events	10 (8%); 12 events
Leukaemic transformation (acute leukaemia)	0; 0 events	2 (2%); 2 events
Skin cancers related to treatment (basal cell carcinoma and melanoma)	0; 0 events	3 (2%); 3 events

Gisslinger H, et al. Lancet Haematol. 2020;7:E196-E208.

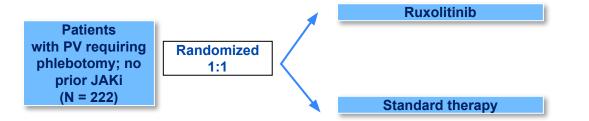
HU Resistance and Intolerance: ELN Criteria

- Resistance and/or intolerance to HU associated with the following in a retrospective analysis of 261 pts
 - Increased risk of disease transformation to AML or MF (HR: 6.8; P < .001)
 - Reduced survival (HR: 5.6; *P* < .001)

Barosi G, et al. Br J Haematol. 2010;148:961-963. Sever M, et al. Leuk Lymphoma. 2014;55:2685-90. Alvarez-Larrán A, et al. Blood. 2012;119:1363-1369.

Ruxolitinib Phase III Trial (RESPONSE)

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera

Alessandro M. Vannucchi, M.D., Jean Jacques Kiladjian, M.D., Ph.D., Martin Griesshammer, M.D., Tamas Masszi, M.D., Ph.D., Simon Durrant, M.D., Francesco Passamonti, M.D., Claire N. Harrison, D.M., Fabrizio Pane, M.D., Pierre Zachee, M.D., Ph.D., Ruben Mesa, M.D., Shui He, Ph.D., Mark M. Jones, M.D., William Garrett, M.B.A., Jingjin Li, Ph.D., Ulrich Pirron, Ph.D., Dany Habr, M.D., and Srdan Verstovsek, M.D., Ph.D.

Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study

Jean-Jacques Kiladjian, Pierre Zachee, Masayuki Hino, Fabrizio Pane, Tamas Masszi, Claire N Harrison, Ruben Mesa, Carole B Miller, Francesco Passamonti, Simon Durrant, Martin Griesshammer, Keita Kirito, Carlos Besses, Beatriz Moiraghi, Elisa Rumi, Vittorio Rosti, Igor Wolfgang Blau, Nathalie Francillard, Tuochuan Dong, Monika Wroclawska, Alessandro M Vannucchi, Srdan Verstovsek

Vannucchi AM, et al. N Engl J Med. 2015;372:426. Kiladjian JJ, et al. Lancet Haematol. 2020;7(3):e226.

Ruxolitinib Phase III Trial (RESPONSE)

Phase III RESPONSE: Long-Term Efficacy and Safety (5 Years)

- Duration of **HCT control** at 224 weeks (starting from week 32)
 - **0.73** (95% CI: 0.60-0.83).
- Duration **maintaining** ≥ 35% of ٠ reduction in the spleen volume at week 224 (starting **Durability of Primary Response (HCT and spleen)** from week 32) A 100-Primary composite response (%) 80-60-40-20-+ Censoring times Ruxolitinib 0-12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228 0 6 Number at risk 25 25 25 25 25 25 25 24 22 22 22 22 22 22 22 22 21 21 21 20 20 20 20 19 19 19 18 18 18 17 17 17 17 17 16 16 16 11 11 9 0 2 Events 1 6 6 6 6 6 6 0 0 0 0 0 0 2 2 2 2 2 3 3 5 5 5 6

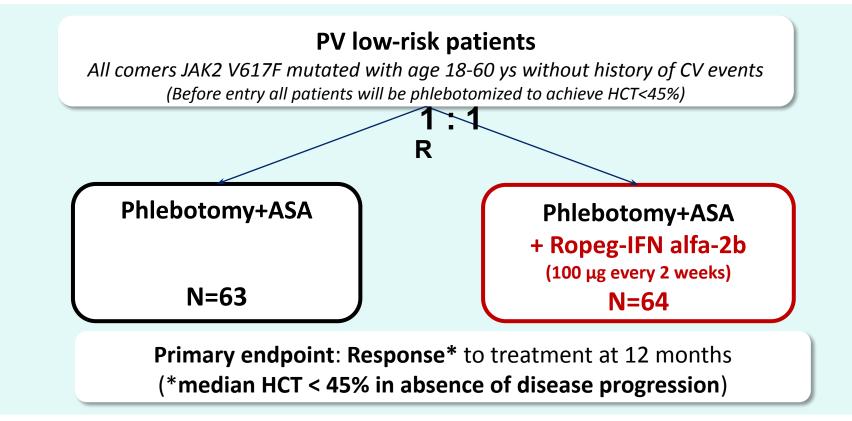
Second-line Treatment Options for Pts With PV Who Require Cytoreductive Therapy

First line "low risk": ASA +Phlebotomy

First line "high risk": ROPEG-interferon, Hydrea

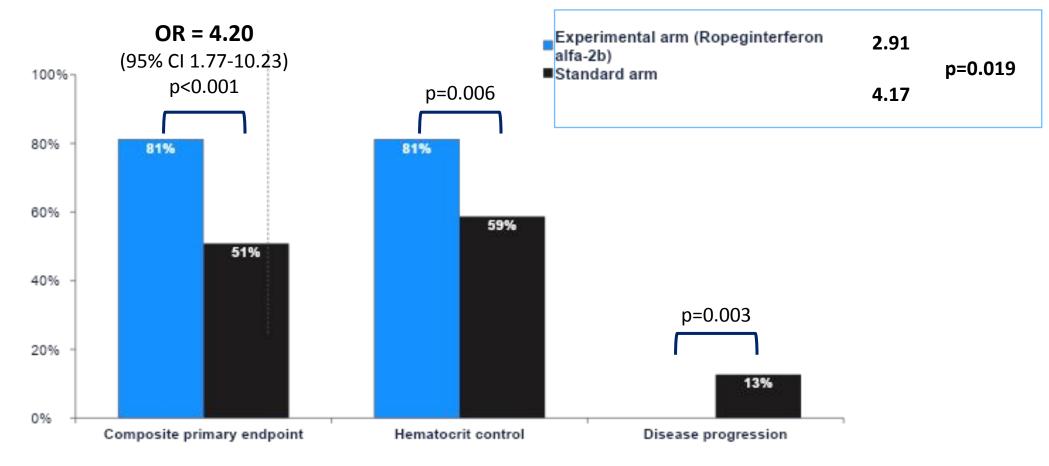
Second line:

Ruxolitinib


- Indicated for pts with intolerance/inadequate response to HU PegIFN
- If intolerance/inadequate response to first-line HU

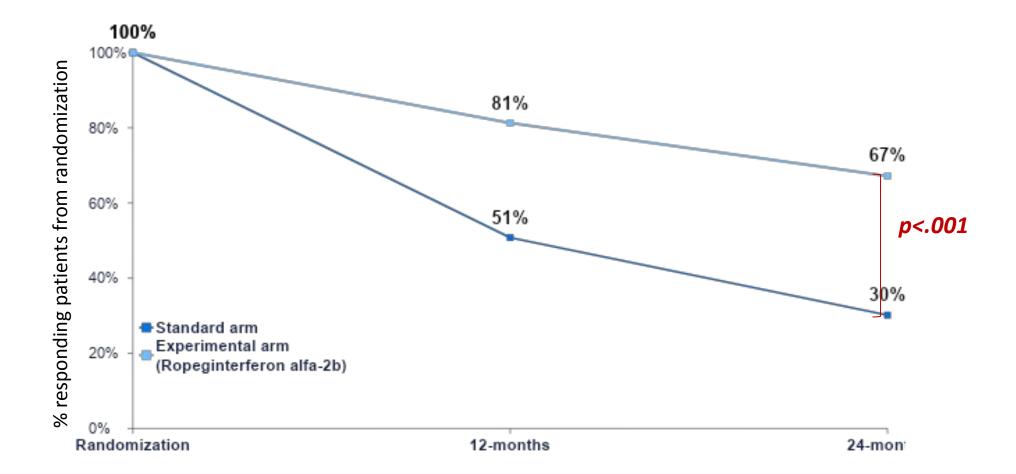
If intolerance/inadequate response to first-line

Emerging: Rusfertide (hepcidin-mimetic in phase III)


Ropeginterferon Alfa-2b Versus Standard Therapy for

Low-Risk Patients with Polycythemia Vera. Final Results of Low-PV Randomized Phase II Trial

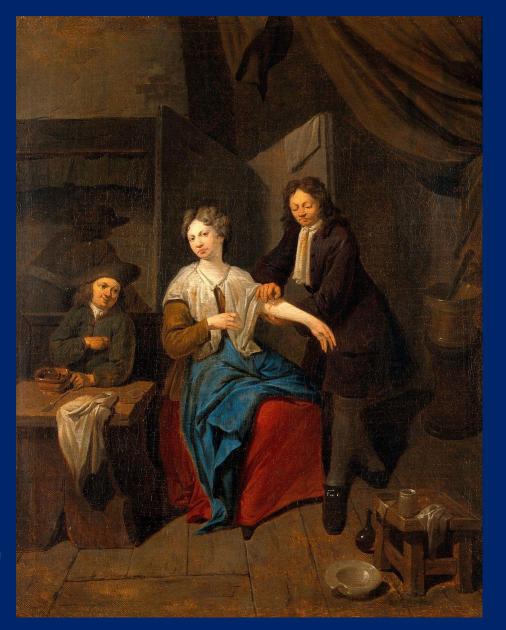
Core study: primary endpoint


Mean number of phlebotomy per pat/year:

Disease progression was observed in 8 patients (all in standard arm):

- In 6, platelet count progression to >1000x10⁹/L in pts with baseline values lower than $600x10^{9}$ /L.
- In 2, splenic infarction and transient ischemic attack, respectively

Treatment response maintenance, by ITT*



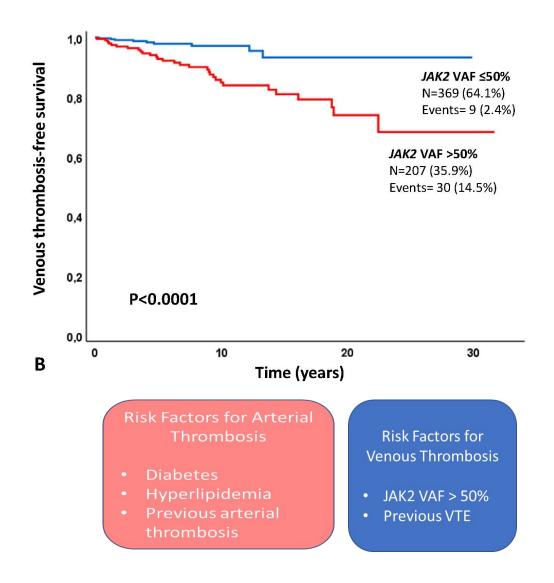
* All randomized patients included. Patients crossed-over were censored at 12 months as non-responders of the orginal arm

Towards Disease Modification in PV: Allele burden reduction and its significance

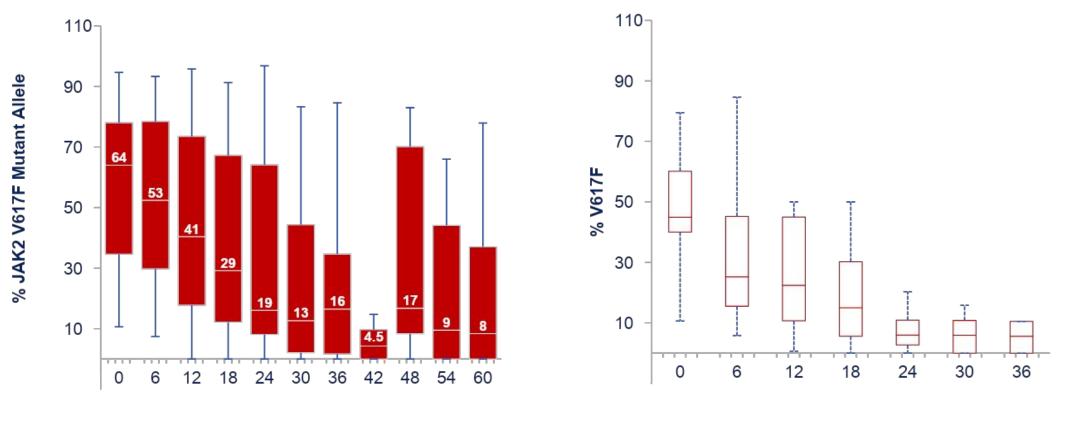
Allele burden / Variant Allele Fraction (**VAF**) – The amount of the JAK2 V617F mutation in the blood or bone marrow

Phlebotomy: Tried and True or Historical Relic?

Bloodletting surgeon preparing to let blood by cupping

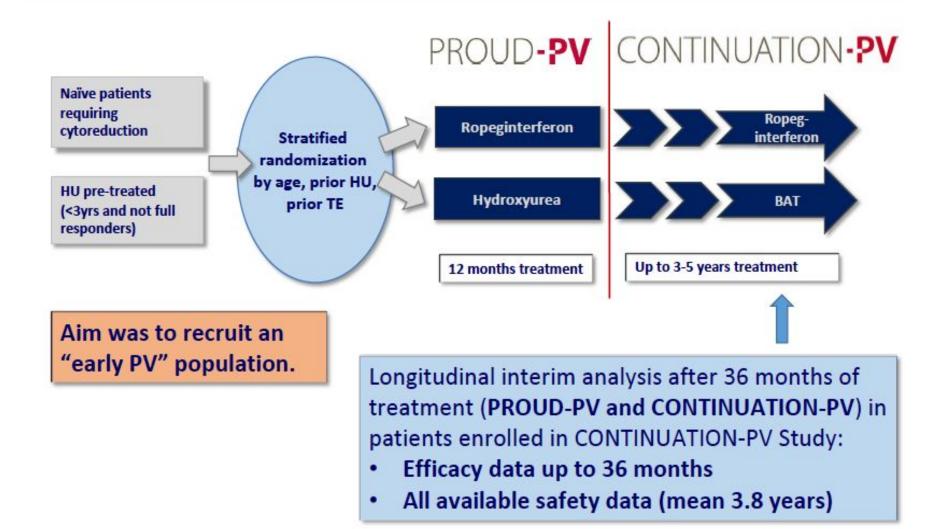

A surgeon preparing to let blood by cupping, his apprentice warming the cupping glass. 18th century oil painting attributed to Jan Baptist Lambrechts.(less)

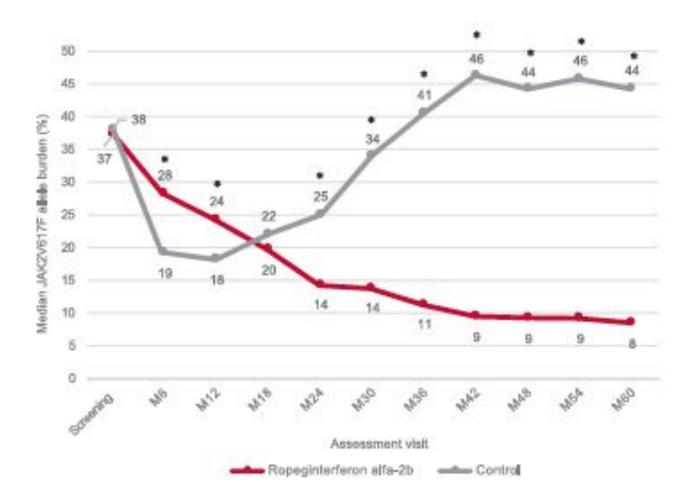
Wellcome Collection, London


JAK2 allele burden Associations in PV

Increased JAK2 V617F allele fraction is correlated with:

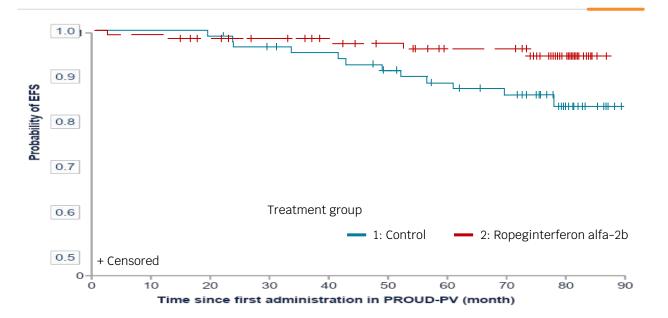
- Increased WBC
- Venous thrombosis risk (potential life-threatening event)
- Presence of splenomegaly (impaired quality of life)
- Risk of progression to myelofibrosis (disease progression)


Interferon has consistently shown the ability to reduce JAK2 VAF


Time (months)

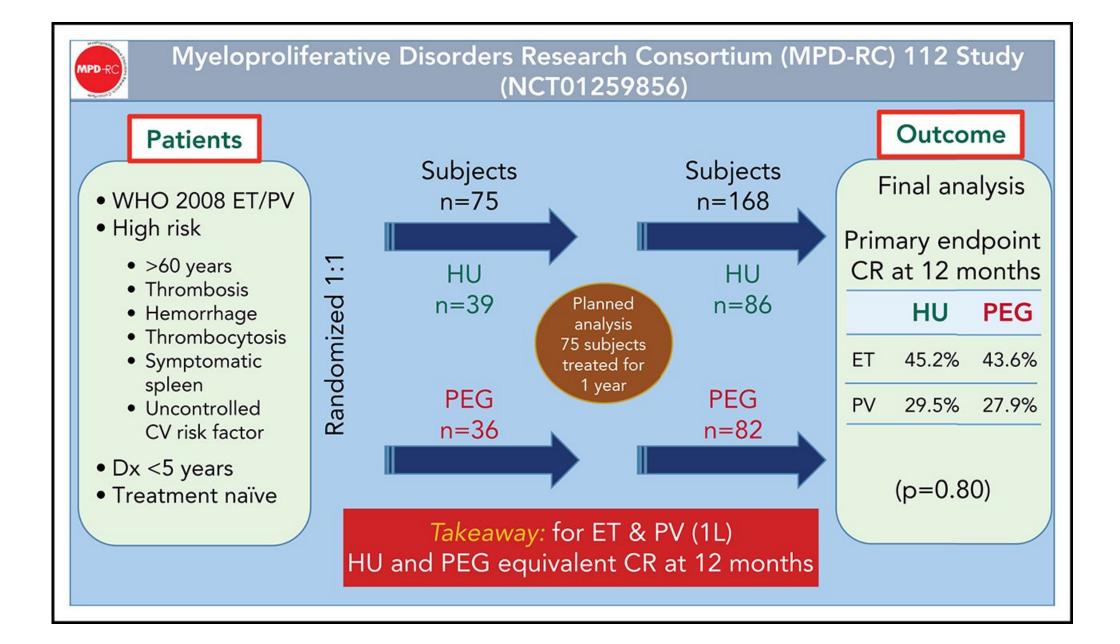
Months

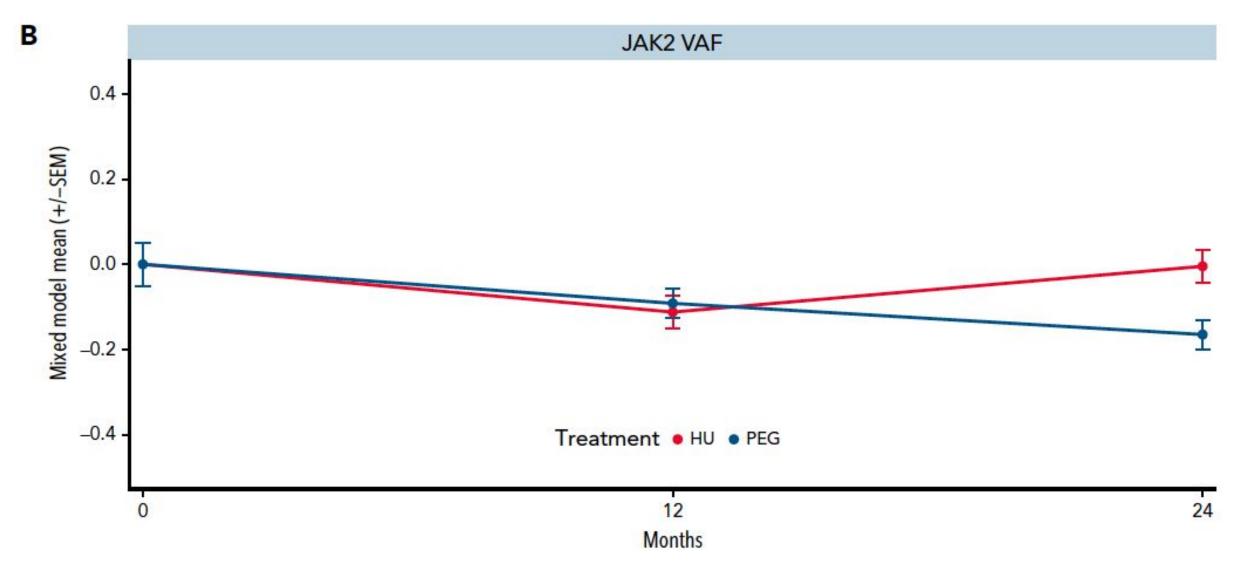
Ropeginterferon alfa-2b phase III development in PV: PROUD-PV and CONTINUATION-PV Studies



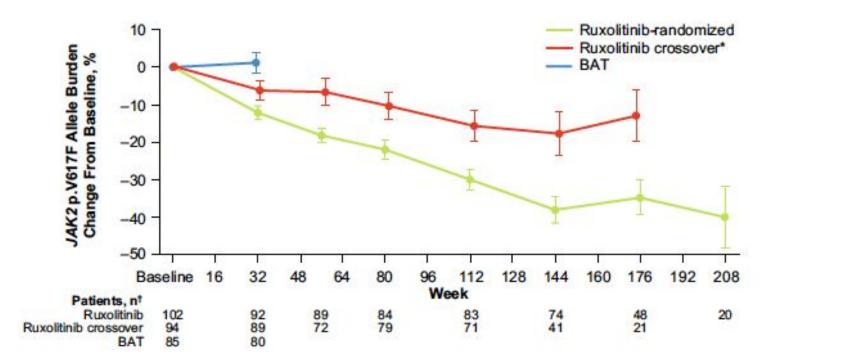
ROPEG-INF versus Hydrea: Impact on JAK2V617F VAF

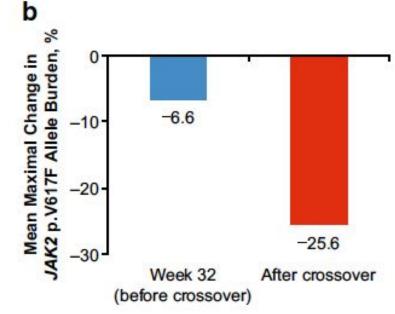
Kiladjian et al. *Leukemia* 2022


PROUD-PV/CONTINUATION-PV Trials- Other Clinically Significant Findings


EFS @ 6 years

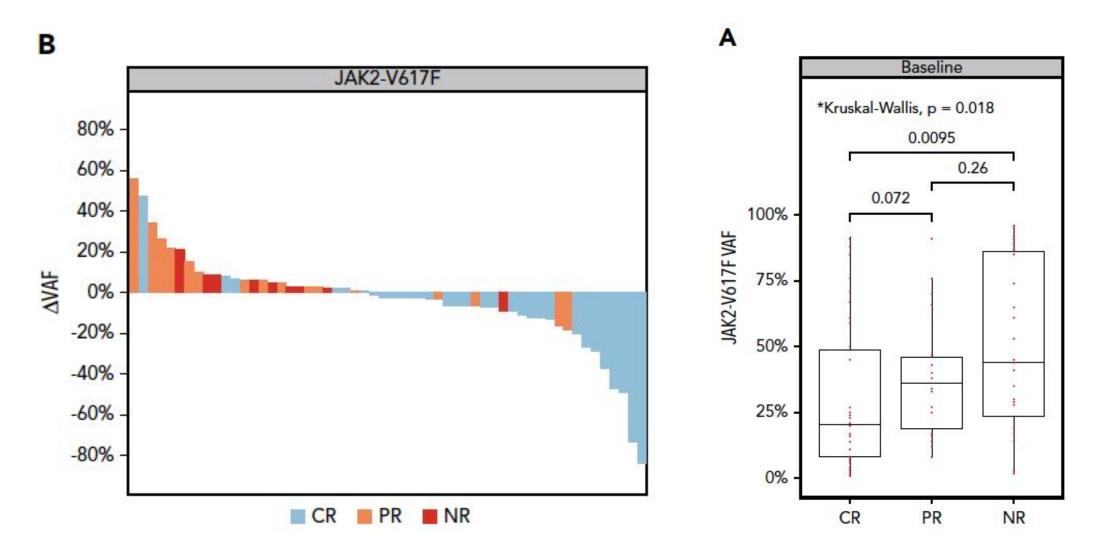
@ 6 years	roPEG-INF-α-2b	Hydroxyurea/BAT	P-value
Risk events, n(%)	5/95 (5.3%)	12/74 (16.2%)	HR:0.34 (p=0.04)
Thromboembolism	2	5	
Myelofibrosis	1	2	
Death	2	3	
Acute leukemia	0	2	


Gisslinger et al, Leukemia, 2023



Pegasys versus Hydrea: Impact on JAK2V617F VAF

Impact of Ruxolitinib on *JAK2*V617F Allele Burden in Polycythemia Vera (RESPONSE Trial)

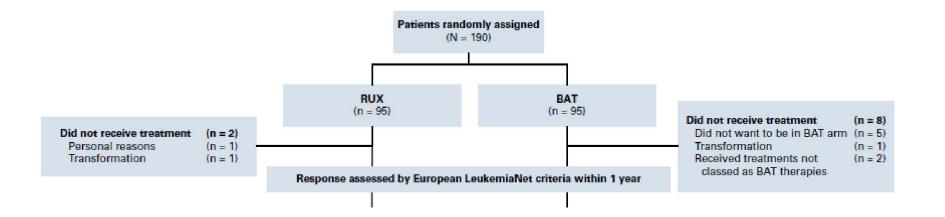

Vannuchi et al. *Ann Hem* 2017

How Well Do Changes in JAK2VAF Correspond to Spleen Responses? (RESPONSE Trial)

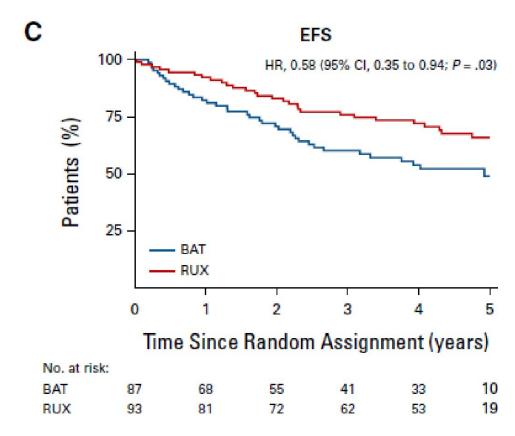
Table 4 Final percentagereduction from baseline in JAK2p.V617F allele burden and spleenvolume

	Ruxolitinib-ra	andomized	Ruxolitinib crossover	
JAK2 p.V617F allele burden reduction	$\geq 20\%$ (<i>n</i> = 52)	<20% (<i>n</i> = 47)	$\geq 20\%$ (<i>n</i> = 32)	$<\!\!20\%$ (<i>n</i> = 60)
Spleen volume reduction, n (%)				
≥35%	45 (86.5)	18 (38.3)	25 (78.1)	20 (33.3)
<35%	7 (13.5)	29 (61.7)	7 (21.9)	40 (66.7)

How Well Do Changes in JAK2VAF Correspond to Hematologic Responses? MPD-RC 111 Trial

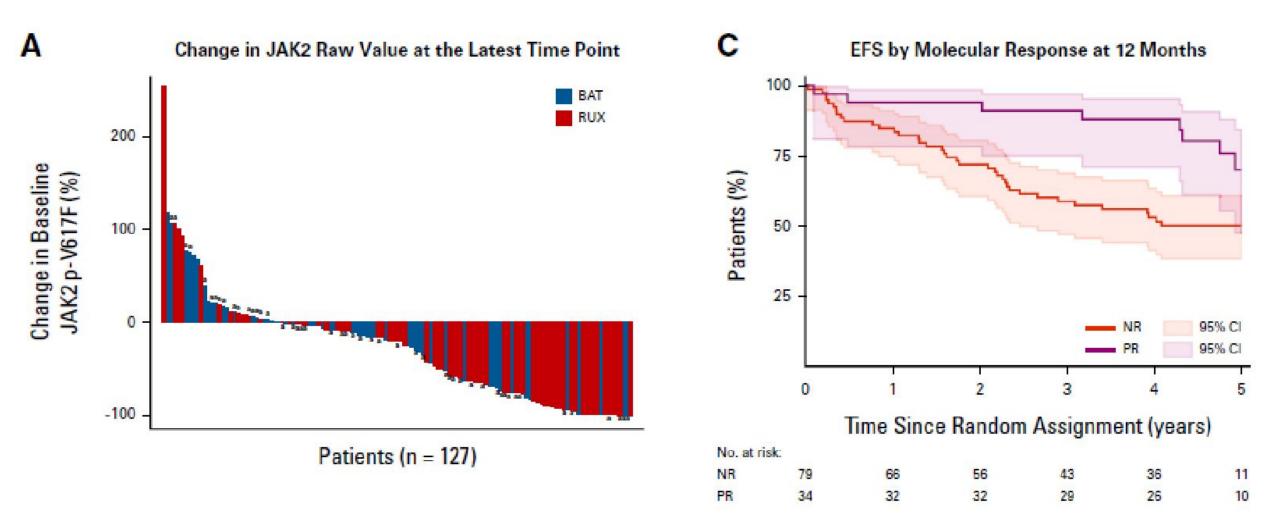


Yacoub et al. *Blood* 2019


[®]Ruxolitinib Versus Best Available Therapy for Polycythemia Vera Intolerant or Resistant to Hydroxycarbamide in a Randomized Trial

Claire N. Harrison, DM, FRCP¹ (b); Jyoti Nangalia, MB BChir, PhD^{2,3,4} (b); Rebecca Boucher, PhD⁵ (c); Aimee Jackson, MSc⁵; Christina Yap, PhD^{5,6} (c); Jennifer O'Sullivan, MB BCh BAO^{1,7}; Sonia Fox, BSc⁵; Isaak Ailts, MD⁸ (c); Amylou C. Dueck, PhD⁹ (c); Holly L. Geyer, MD⁸; Ruben A. Mesa, MD, FACP¹⁰ (c); William G. Dunn, MB ChB⁴ (c); Eugene Nadezhdin, PhD³; Natalia Curto-Garcia, MB BCh, MRCPath¹; Anna Green, MB BS¹; Bridget Wilkins, PhD, MRCPath¹; Jason Coppell, MBBS¹¹; John Laurie, MBChB, MRCPath¹²; Mamta Garg, MB, FRCP, FRCPath¹³ (c); Joanne Ewing, MD, PhD¹⁴; Steven Knapper, BMBCh, FRCPath¹⁵ (c); Josephine Crowe, MBBS, MRCPath¹⁶ (c); Frederick Chen, PhD, FRCP, FRCPath¹⁷; Ioannis Koutsavlis, MB, FRCPath¹⁸ (c); Anna Godfrey, BMBCh, PhD⁴; Siamak Arami, MD, FRCPath¹⁹ (c); Mark Drummond, PhD, FRCPath²⁰; Jennifer Byme, PhD, FRCPath²¹ (c); Fiona Clark, MB, FRCP, FRCPath¹⁷; Carolyn Mead-Harvey, MS⁹; Elizabeth Joanna Baxter, PhD²² (c); Mary Frances McMullin, MD, FRCP, FRCPath²³ (c); and Adam J. Mead, MB BChir, PhD^{7,24} (c)

DOI https://doi.org/10.1200/JC0.22.01935



Ruxolitinib Improves Event-Free Survival

EFS:

Major thrombosis Major hemorrhage Disease transformation Death

Conclusions

Phlebotomy and Aspirin remain standard of care for "low-risk" PV patients. Recent prospective and retrospective evidence suggests that earlier intervention with cytoreductive therapy (particularly interferon) may have benefit. More data is needed.

Ropeg-interferon and ruxolitinib have both demonstrated superiority to hydrea in randomized trials when assessing HCT control as an outcome. Does this translate into better long-term outcomes? Early data suggests this. More data is needed.

Current mediations such intereferon, hydrea, and ruxolitinib all have demonstrated the ability to reduce *JAK2*V617F allele burden to varying degrees. However this reduction is relatively modest and "elimination" of the mutant allele is the exception not the rule

Emerging evidence is beginning to suggest that reduction in allele burden may correlate with important clinical outcomes, and that starting treatment when allele burden is lower may make responses more likely. More data is needed.

ISSUES \checkmark FIRST EDITION ABSTRACTS \checkmark COLLECTIONS \checkmark AUTHC

REVIEW ARTICLE | SEPTEMBER 20, 2023

Moving towards disease modification in polycythemia vera

Jan Philipp Bewersdorf, Joan How, Lucia Masarova, Prithviraj Bose, Naveen Pemmaraju, John O. Mascarenhas, Raajit K. Rampal 📼

Blood blood.2023021503.

https://doi.org/10.1182/blood.2023021503

Article history 🕒

https://pubmed.ncbi.nlm.nih.gov/37729609/

rampalr@mskcc.org