

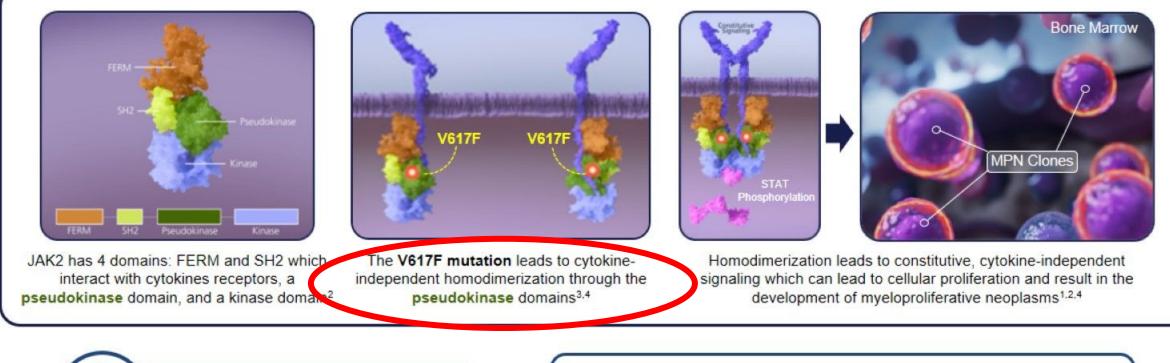
John Mascarenhas, MD Professor of Medicine Icahn School of Medicine at Mount Sinai New York, NY

• New JAK inhibitors

- New non-JAK inhibitors
- JAK inhibitor based combinations

New Drugs in MF

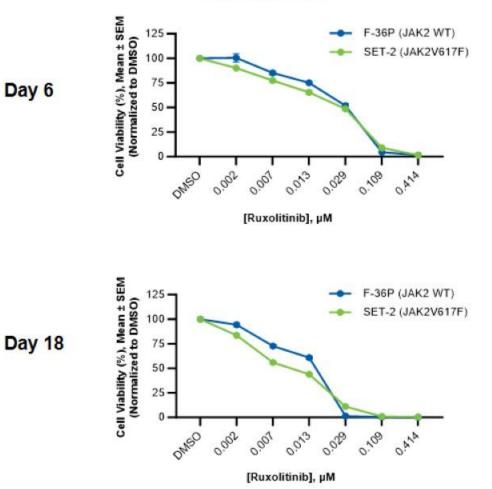
- New JAK inhibitors
 - INCB160058 JAK2V617F selective inhibitor
 - AJ-11095 type 2 JAK2 inhibitor


• New non-JAK inhibitors

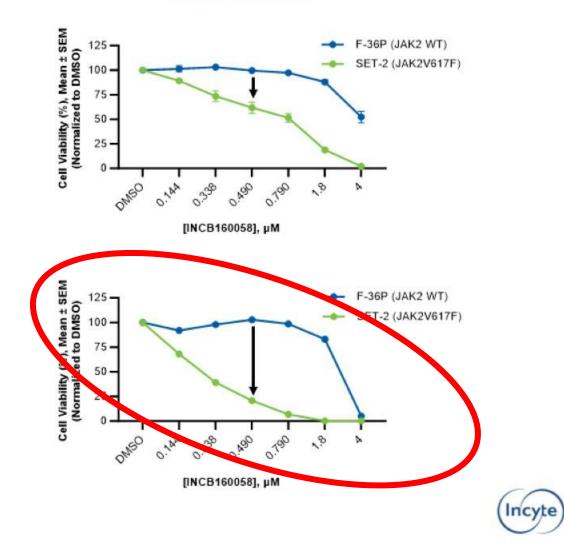
• JAK inhibitor based combinations

JAK2V617F is the Most Common Oncogenic Driver Mutation in the BCR::ABL1-Negative MPNs¹

JAK2V617F occurs in ~65% of patients with PMF, ~96% of patients with PV and ~55% of patients with ET

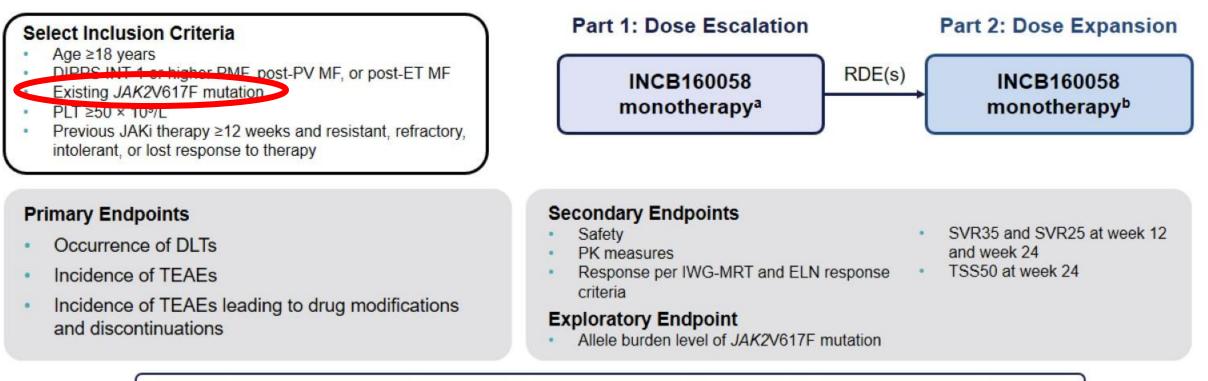

Incyte is investigating INCB160058, a JAK2V617F-selective inhibitor

INCB160058 binds to the pseudokinase domain near the site of the V617F mutation which disrupts oncogenic homodimerization and blocks cytokine-independent activity⁵⁻⁷


1. Tefferi A. Am J Hematol. 2021;96:145-162. 2. Shan Y, et al. Nat Struct Mol Biol. 2014;21:579-584. 3. Oh ST, Gotlib J. Expert Rev Hematol. 2010;3:323-337. 4. Abraham et al. Sci Adv. 2024;10(10):eadl2097. 5. Stubbs M et al. ASH 2023. Abstract 860. 6. Shide K, et al. Blood. 2011;117(25):6866-75. 7. Nakaya Y, et al. Blood Cancer J. 2014; 4(1): e174

INCB160058 Selectively Inhibits Growth of JAK2V617F- Expressing Cells Across a Range of Concentrations

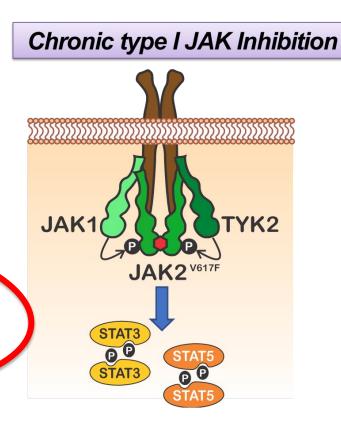
Ruxolitinib



INCB160058

INCB160058-101: Study Design Overview^{1,2}

Study design: Phase 1, open-label study (NCT06313593) to investigate the safety, tolerability, and DLTs of oral INCB160058 (JAK2V617F-selective inhibitor) in patients with myeloproliferative neoplasms to determine MTD and RDE(s).



Based on INCB160058 selectivity for the JAK2V617F mutation, potential for evaluation in PV and/or ET³

^a Administered at protocol defined starting regimen to identify MTD and/or RDE(s).^b Doses administered at RDE(s) identified in Part 1. DIPPS, Dynamic International Prognostic Scoring System; DLT, dose-limiting toxicities; ELN, European LeukemiaNet; ET, essential thrombocythemia; IWG-MRT, International Working Group for Myeloproliferative Neoplasms Research and Treatment; MTD, maximum tolerated dose; PK, pharmacokinetics; PLT. platelet count; PV, polycythemia vera; RDE, recommended dose expansion; SVR, spleen volume reduction; TEAE, treatment emergent adverse event; TSS, total symptom score. 1. ClinicalTrials.gov, Accessed Aug 2024, https://www.clinicaltrials.gov/study/NCT06313593. 2. Data on file. Incyte Corporation. 3.Stubbs M et al. ASH 2023. Abstract 860.

AJ-11095 Type II JAK2 Inhibitor Phase 1 multicenter trial

- The JAK2 kinase has two conformations active "DFG-in" (Type I) and inactive "DFG-out" (Type II)
- All approved JAK2 inhibitors, including ruxolitinib, fedratinib, momelotinib and pacritinib, are Type I inhibitors that bind the *active* conformation only
- Type I JAK2 inhibitors' major limitation: allow JAK2 to form complexes with other JAKs (e.g. JAK2/JAK1, JAK2/TYK2) resulting in "persistent" MPN cells that lose response to Type I therapy
- Previous work showed Type II JAK2 inhibition overcomes ruxolitinib persistent MPN cells and induces disease modification in MPN/JAK-mutant leukemia preclinical models



Persistent JAK-STAT Activation

QR code with link to AJX-101 trial at ClinicalTrials.gov

ClinicalTrials.gov ID: NCT06343805

Reversal of Persistent Activation

New Drugs in MF

• New JAK inhibitors

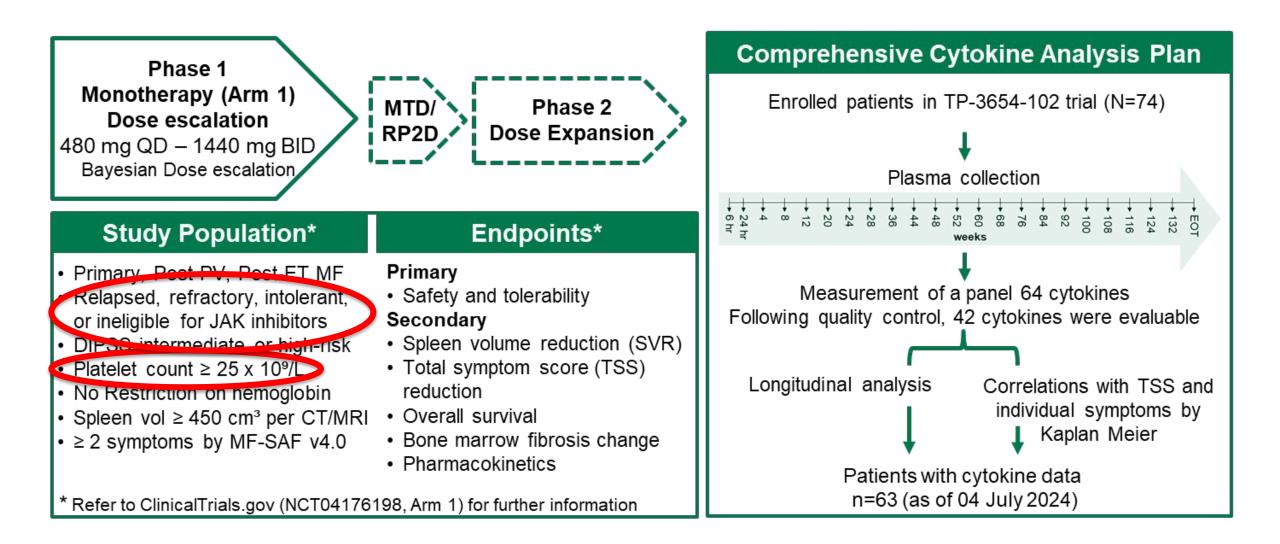
New non-JAK inhibitors

- Nuvisertib PIM1 kinase inhibitor
- Reparaxin CXCR 1/2 antagonist
- INCA033989 mCALR antibody

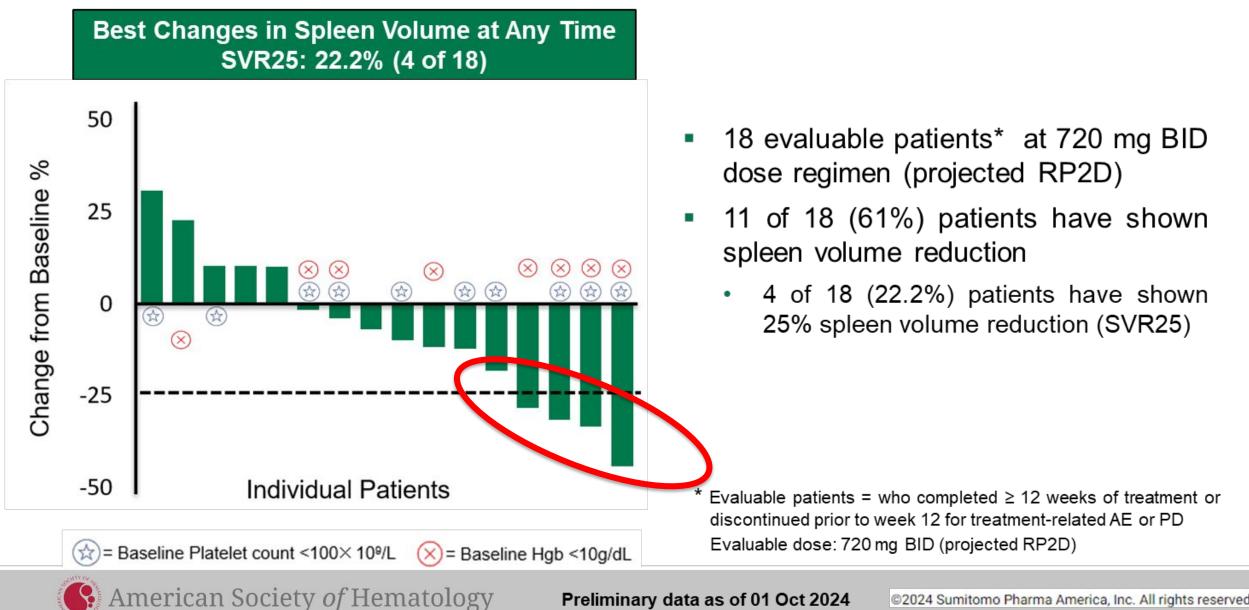
• JAK inhibitor based combinations

Icahn School of Medicine at **Mount Sinai**

Nuvisertib (TP-3654), an Investigational Selective PIM1 Kinase Inhibitor, Showed Durable Clinical Response and Sustained Hematological Improvement in Patients With Relapsed/Refractory Myelofibrosis


Firas El Chaer, MD¹, Lindsay Rein, MD², Junichiro Yuda, MD, PhD³, Kazuya Shimoda, MD, PhD⁴, Akiyoshi Takami, MD, PhD⁵, Michiko Ichii, MD, PhD⁶, James McCloskey, MD⁷, Joseph Scandura, MD, PhD⁸, Allessandra Iurlo, MD, PhD⁹, Prithviraj Bose, MD¹⁰, Tamanna Haque, MD¹¹, Alessandro Lucchesi, MD, PhD¹², Shuichi Shirane, MD, PhD¹³, Giulia Benevolo, MD¹⁴, Idoroenyi Amanam, MD¹⁵, Jean-Jacques Kiladjian, MD, PhD¹⁶, Pankit Vachhani, MD¹⁷, Srinivas Tantravahi, MBBS, MRCP¹⁸, Yasushi Onishi, MD, PhD¹⁹, Ciro Rinaldi, MD, PhD²⁰, Marcello Rotta, MD²¹, Nikki Granacher, MD²², Anand A. Patel, MD²³, Michael Loschi, MD, PhD²⁴, Samah Alimam, MD, PhD²⁵, Terrence Bradley, MD²⁶, Stanley Cheung, MD, PhD²⁷, Vincent Ribrag, MD²⁸, Sujan Kabir, MD²⁹, Karen Ansaldo, PharmD²⁹, Masataka Seki, MS²⁹, Vincent Loksa, PharmD²⁹, Zhonggai Li, PhD²⁹, Jason M Foulks, PhD²⁹, Jatin Shah, MD²⁹, Raajit Rampal, MD, PhD¹¹

¹University of Virginia Health System, VA; ²Duke University Medical Center, NC; ³National Cancer Center Hospital East, Japan; ⁴University of Miyazaki, Japan; ⁵Aichi Medical University School of Medicine, Japan; ⁶Osaka University Graduate School of Medicine, Japan; ⁷John Theurer Cancer Center at Hackensack Meridian Health, NJ; ⁸Weill Cornell Medicine, NY; ⁹Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy; ¹⁰MD Anderson Cancer Center, University of Texas, TX; ¹¹Memorial Sloan Kettering Cancer Center, NY; ¹²IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Italy; ¹³Juntendo University School of Medicine, Japan; ¹⁴ Azienda
Ospedaliero-Universitaria, Italy; ¹⁵City of Hope, CA; ¹⁶Hopital Saint-Louis, France; ¹⁷University of Alabama at Birmingham, AL; ¹⁸Huntsman Cancer Institute, UT; ¹⁹Tohoku University Hospital, Japan; ²⁰United Lincolnshire Teaching Hospital and University of Lincoln, UK; ²¹Colorado Blood Cancer Institute, CO; ²²ZNA Middelheim, Belgium; ²³University of Chicago, IL; ²⁴CHU de Nice Hôpital l'Archet 1, France; ²⁵University College London Hospitals, UK; ²⁶University of Miami Health System, FL; ²⁷ICON Cancer Care, Australia; ²⁸Institut Gustave Roussy, France; ²⁹Sumitomo Pharma America, Inc., MA


©2024 Sumitomo Pharma America, Inc. All rights reserved.

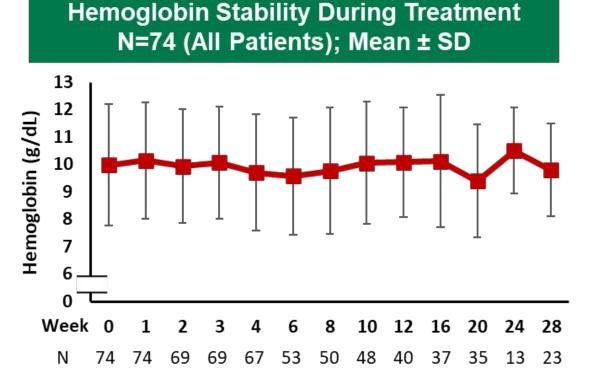
Ongoing Nuvisertib (TP-3654) Global Phase 1/2 Study in MF

Spleen Volume Response at 720 mg BID

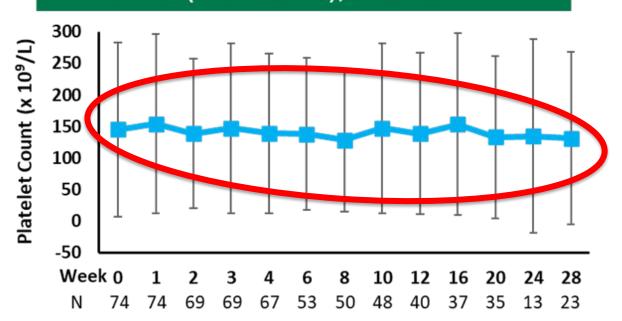
Preliminary data as of 01 Oct 2024

©2024 Sumitomo Pharma America, Inc. All rights reserved.

Symptom Response at 720 mg BID


Absolute Changes in Individual Symptoms Best Changes in TSS at Any Time (Baseline Individual Symptom Score ≥3) (N=18)* TSS50: 44.4% (8 of 18) Abdominal Night Pain under Early 75 Fatigue discomfort Bone pain Itching sweats satiety left ribs 0 50 Symptom -0.5 Change from Baseline % 25 -1 Change in X -1.5 $(\frac{1}{2})$ (* 0 N=13 -2 N=8 Absolute -25 -2.5 N=11 -50 Mean -3 N=3 N=7 -75 N=5 -3.5 N=4 -100 Individual Patients Evaluable patients = who completed \geq 12 weeks of treatment or discontinued prior to week 12 for treatment-related AE or PD = Baseline Platelet count <100×109/L (X) = Baseline Hgb <10g/dL Evaluable dose: 720 mg BID (projected RP2D)

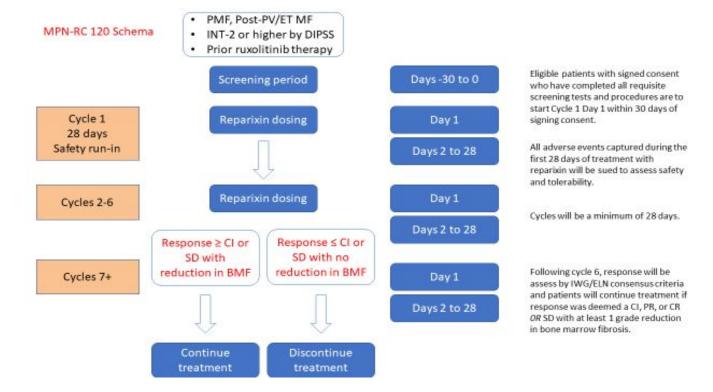
American Society of Hematology


Preliminary data as of 01 Oct 2024

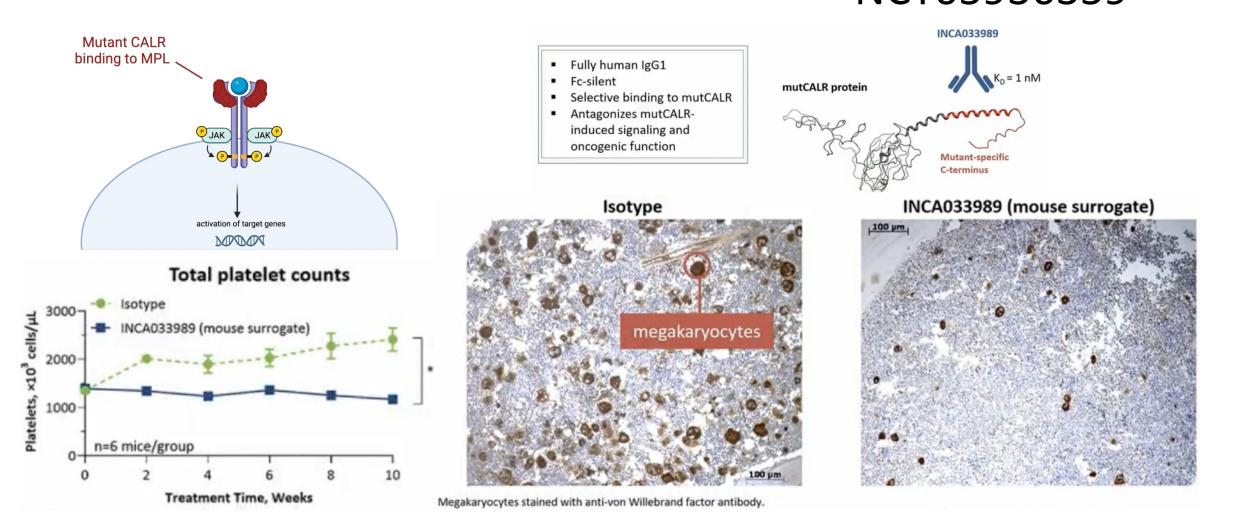
©2024 Sumitomo Pharma America, Inc. All rights reserved.

Preservation of hematopoiesis with nuvisertib

 Hemoglobin remains stable in all patients during first 28 weeks of nuvisertib treatment Platelet Stability During Treatment N=74 (All Patients); Mean ± SD


 Platelet count remains stable in all patients during first 28 weeks of nuvisertib treatment

MPN-RC 120: Targeting IL-8 in Myelofibrosis with Reparixin NCT05835466


- IL-8 is elevated in MF and associated with adverse outcome
- IL-8 is secreted by the MF HSC and promotes proliferation and survival
- IL-8 pathway inhibition in culture reduced MF HSC engraftment and survival in mice

Study Chairs: Aaron Gerds, MD (Cleveland Clinic) Marina Kremyanskaya, MD (Mount Sinai)

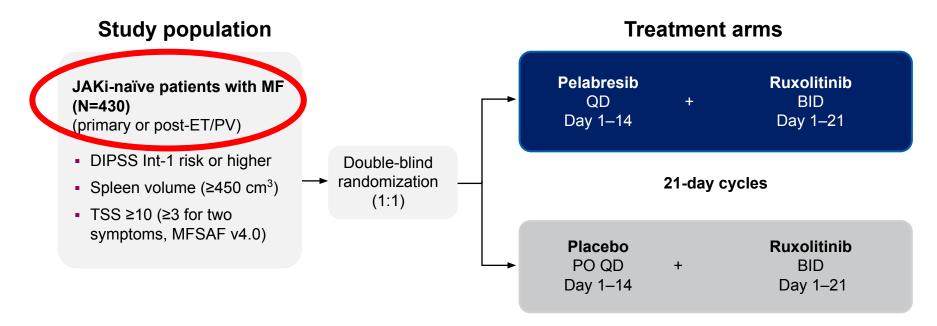
INCA033989, a mutant CALR specific monoclonal antibody Phase 1 global trials NCT05936359

New Drugs in MF

• New JAK inhibitors

• New non-JAK inhibitors

- JAK inhibitor based combinations
 - MANIFEST-2: Pelabresib
 - SENTRY: Selinexor
 - POIESIS: Navtemadlin


Icahn School of Medicine at **Mount Sinai**

Updated Results From the Phase 3 MANIFEST-2 Study of Pelabresib in Combination With Ruxolitinib for Janus Kinase Inhibitor–Naïve Patients With Myelofibrosis

John Mascarenhas,¹ Sebastian Grosicki,² Dominik Chraniuk,³ Elisabetta Abruzzese,⁴ Prithviraj Bose,⁵ Aaron Gerds,⁶ Alessandro M. Vannucchi,⁷ Francesca Palandri,⁸ Sung-Eun Lee,⁹ Vikas Gupta,¹⁰ Alessandro Lucchesi,¹¹ Stephen T. Oh,¹² Andrew T. Kuykendall,¹³ Andrea Patriarca,¹⁴ Alberto Álvarez-Larrán,¹⁵ Ruben Mesa,¹⁶ Jean-Jacques Kiladjian,¹⁷ Moshe Talpaz,¹⁸ Morgan Harris,¹⁹ Sarah-Katharina Kays,²⁰ Tabea Kräft,²⁰ Qing Li,²¹ Anna-Maria Jegg,²⁰ Claire Harrison,²² Raajit K. Rampal²³

¹Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ²Department of Cancer Prevention, Medical University of Silesia, Katowice, Poland; ³Hematology Ward, Wojewódzki Szpital Zespolony im. L. Rydygiera, Torun, Poland; ⁴Department of Hematology, S. Eugenio Hospital, Tor Vergata University, ASL Roma 2, Rome, Italy; ⁵Leukemia Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁶Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; ⁷Department of Clinical and Experimental Medicine, University of Florence, Italy; ⁸IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; ⁹Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; ¹⁰Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹¹Hematology Unit, IRCCS Istituto Romagnolo per lo Studio e la Cura dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy; ¹²Washington University School of Medicine in St. Louis, St. Louis, MO, USA; ¹³Moffitt Cancer Center, Tampa, FL, USA; ¹⁴Hematology Unit, AOU Maggiore della Carità and University of Eastern Piedmont, Novara, Italy; ¹⁵Hematology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; ¹⁶Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Yinston-Salem, NC, USA; ¹⁷Clinical Investigation Center, Hôpital Saint-Louis, Université de Paris, Paris, France; ¹⁸University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA; ¹⁹Constellation Pharmaceuticals, a MorphoSys Company, Boston, MA, USA; ²⁰MorphoSys AG, Planegg, Germany; ²¹MorphoSys US Inc, Boston, MA, USA; ²²Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK; ²³Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA

MANIFEST-2 Study: Global, Randomized, Double-Blind, Active-Controlled, Phase 3 Trial

 As of March 29, 2024, 58.9% (126/214) and 62.0% (134/216) of patients continued on double-blind treatment in the pelabresib + ruxolitinib and placebo + ruxolitinib arms, respectively

Reasons for discontinuation in patients treated with pelabresib + ruxolitinib versus placebo + ruxolitinib include AE (15.9% vs 9.7%), physician decision (6.5% vs 12.5%), disease progression (4.2% vs 3.7%), eligible for transplant (4.7% vs 5.6%), and other reasons including non-compliance or withdrawal of consent (8.9% vs 5.6%)

Primary endpoint

SVR35 at Week 24

Key secondary endpoints

- Absolute change in TSS from baseline at Week 24
- TSS50 at Week 24

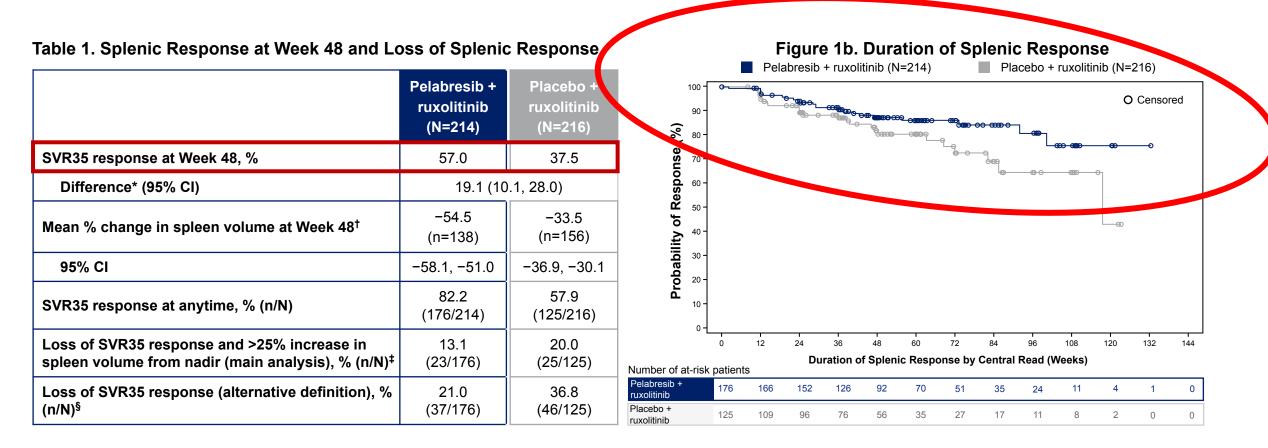
Other prespecified^{*} endpoints

- SVR35 response at Week 48
- Absolute change in TSS at Week 48
- TSS50 response at Week 48
- Hemoglobin response[†]
- Bone marrow fibrosis at Week 48

Exploratory^{*} endpoints

- Changes in proinflammatory cytokine levels from baseline at Week 48
- Changes in mutant clone burden VAF from baseline at Week 48

Safety


• AEs of all grades and serious AEs

*Other prespecified and exploratory endpoints are presented descriptively. [†]Hemoglobin response defined as ≥1.5 g/dL mean increase from baseline without transfusions in the prior 12 weeks.

AE, adverse event; BID, twice daily; CT, computed tomography; DIPSS, Dynamic International Prognostic Scoring System; ET, essential thrombocythemia; Int, intermediate; JAKi, Janus kinase inhibitor; MF, myelofibrosis; MFSAF, Myelofibrosis Symptom Assessment Form; MRI, magnetic resonance imaging; PO, orally; PV, polycythemia vera; QD, once daily; SVR35, ≥35% reduction in spleen volume from baseline; TSS, total symptom score; TSS50, ≥50% reduction in total symptom score from baseline; VAF, variant allele fraction. Harrison CN, et al. *Future Oncol.* 2022;18(27):2987-2997; Rampal R, et al. Presented at ASH 2023 [Oral 628].

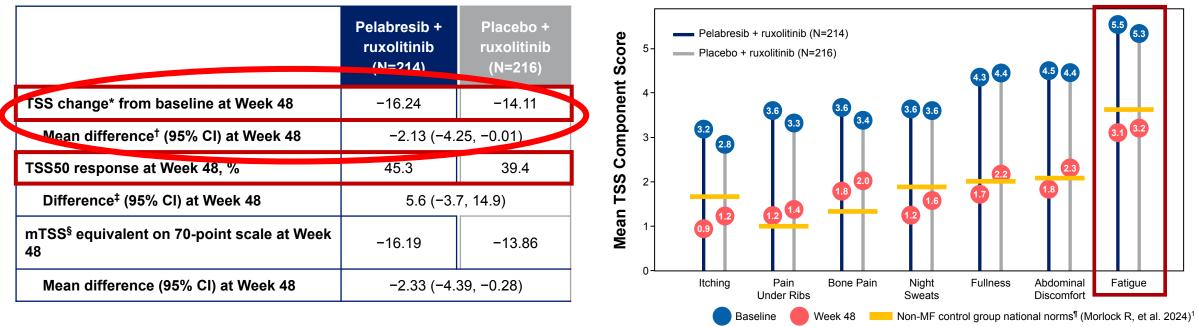
Splenic Response at Week 48

SVR35 response rates continued to be greater at Week 48 with pelabresib + ruxolitinib versus placebo + ruxolitinib (57.0% vs 37.5%, respectively)

• Higher proportion of patients maintained SVR35 responses in the pelabresib + ruxolitinib arm versus the placebo + ruxolitinib arm

CI, confidence interval; CT, computed tomography; MRI, magnetic resonance imaging; SVR35, ≥35% reduction in spleen volume from baseline.

Data cutoff date: March 29, 2024. Spleen volume assessed by central read. *Calculated by stratified Cochran–Mantel–Haenszel test. [†]Patients without Week 48 assessment are considered non-responders. [‡]Among anytime SVR35 responders. Duration of the splenic response is defined as the time from when the criterion for splenic response is first met (ie, a \geq 35% reduction from baseline spleen volume) until the time at which there is a <35% reduction in spleen volume from baseline spleen volume) until the time at the time from when the criterion for splenic response is first met (ie, a \geq 35% reduction for duration of the splenic response is defined as the time from when the criterion for splenic response is first met (ie, a \geq 35% reduction from baseline spleen volume) until the time at which there is a <35% reduction in spleen volume from baseline spleen volume) until the time at which there is a <35% reduction for splenic response is first met (ie, a \geq 35% reduction from baseline spleen volume) until the time at which there is a <35% reduction in spleen volume from baseline spleen volume) until the time at which there is a <35% reduction in spleen volume from baseline spleen volume) until the time at which there is a <35% reduction in spleen volume from baseline spleen volume) until the time at which there is a <35% reduction in spleen volume from baseline.


Total Symptom Score at Week 48

Numerically greater improvements for patients treated with pelabresib + ruxolitinib versus placebo + ruxolitinib, with large symptom reduction in both arms

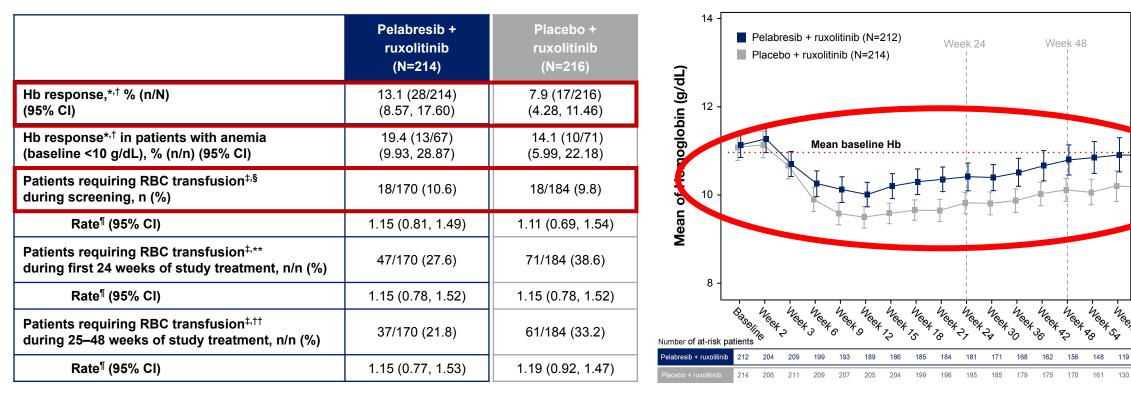
2b. TSS Component Scores at Week 48

Figure 2. Total Symptom Score at Week 48

2a. TSS at Week 48 (ITT Population)

- TSS individual domain scores were similar between the two arms and similar to the national norms in people without MF¹
- In the analysis of mTSS (MFSAF excluding fatigue) equivalent on 70-point scale, LSM change from baseline was -16.19 with pelabresib + ruxolitinib versus -13.86 with placebo + ruxolitinib (mean difference: -2.33; 95% CI -4.39, -0.28)
- At Week 48, 36% of patients in the pelabresib + ruxolitinib arm had both SVR35 and TSS50 responses versus 19% in the placebo + ruxolitinib arm

Data cutoff date: March 29, 2024. *Change from baseline determined by ANCOVA model using multiple imputation. [†]LSM difference from ANCOVA model using baseline DIPSS score, baseline platelet count, and baseline spleen volume as factors, and baseline TSS as covariate. [‡]Difference in treatment groups analyzed by stratified Cochran–Mantel–Haenszel test (weighted 95% CI adjusted across strata). [§]Modified TSS (excludes fatigue domain). [¶]Non-MF control group was of a similar age to patients in the MANIFEST-2 study. ANCOVA, analysis of covariance; CI, confidence interval; DIPSS, Dynamic International Prognostic Scoring System; LSM, least squares mean; MF, myelofibrosis; MFSAF, Myelofibrosis Symptom Assessment Form; mTSS, modified total symptom score; ITT, intent-to-treat; TSS, total symptom score; TSS50, ≥50% reduction in total symptom score from baseline.


1. Morlock R, et al. Presented at ASH 2024 [Abstract 2419].

Overall, a numerically greater proportion of patients had a hemoglobin response with pelabresib + ruxolitinib versus placebo + ruxolitinib

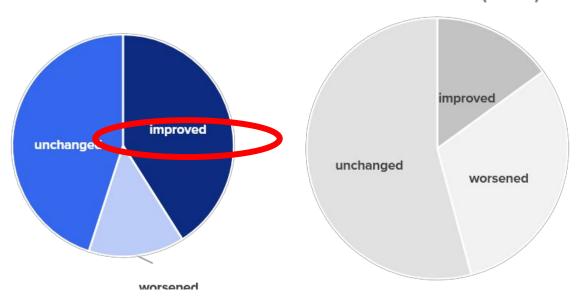
Figure 4. Hemoglobin Response at Week 48

4a. Hemoglobin Response and RBC Transfusions at Week 48

4b. Mean Hemoglobin Levels Over Time, Safety Population

• Fewer patients required RBC transfusions during the first 48 weeks in the pelabresib + ruxolitinib arm versus placebo + ruxolitinib arm

Data cutoff date: March 29, 2024. *Hemoglobin response in the ITT population. [†]Baseline hemoglobin defined as the last assessment prior to or on Cycle 1 Day 1, regardless of blood transfusions. A similar effect was seen across DIPSS categories. [‡]RBC transfusion evaluable patients are patients who have been on the study for 48 weeks without starting new anti-MF treatment. [§]RBC transfusions refer to number of patients who received any RBC transfusion during the 12-week baseline period prior to dosing. [¶]Rate is the average number of RBC units of transfusion per patient-months. **RBC transfusions refer to number of patients who received any RBC transfusion during the first 24 weeks after Cycle 1 Day 1. ^{††}RBC transfusions refer to number of patients who received any RBC transfusion during the 25–48 weeks after Cycle 1 Day 1.


CI, confidence interval; DIPSS, Dynamic International Prognostic Scoring System; Hb, hemoglobin; ITT, intent-to-treat; MF, myelofibrosis; RBC, red blood cell.

Bone Marrow Fibrosis and Proinflammatory Cytokines

Figure 5. Change in Bone Marrow Fibrosis Grade by Central Read at Week 48

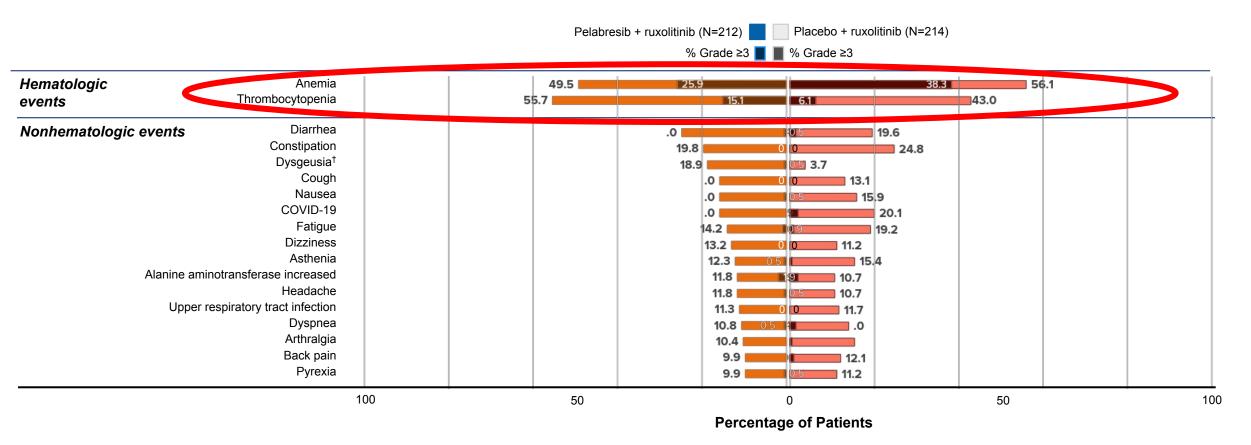
Pelabresib + ruxolitinib (n=100*)

Placebo + ruxolitinib (n=107*)

- Bone marrow fibrosis improvement of ≥1 grade in evaluable patients was reported in 41.0% vs 15.0% of patients in the pelabresib + ruxolitinib vs placebo + ruxolitinib arms, respectively, at Week 48 (difference: 27.32%; 95% CI 15.52, 39.12)
- There was a larger difference between treatment arms in bone marrow fibrosis improvement of ≥1 grade at Week 48 compared with Week 24, in favor of the pelabresib + ruxolitinib arm

Figure 6. Percent Change in Proinflammatory Cytokines Levels From Baseline at Week 48

	Pelabresib + ruxolitinib	Placebo + ruxolitinib			
Reductio	on in proinflammatory cytokine levels	Increase in proinflammatory cytokine levels			
NF-ĸB set	⊦∎⊣	-28.7	(-31.9, -25.4)	n=143	
	⊢■−1	-20.2	(-23.5, -16.9)	n=157	
IL-6	⊢	-25.5	(-35.9, -13.3)	n=143	
IL-0	·+	-17.8	(-28.3, 5.8)	n=157	
IL-8	⊢	-19.3	(-27.8, -9.8)	n=142	
IL-0	⊢ -	-2.4	(-13.1, -9.6)	n=156	
TNF-alpha	⊢∎⊣	-43.9	(-47.4, -40.2)	n=143	
		-33.6	(-37.4, -29.4)	n=155	
	-50 -25 (25	50		


Mean Change From Baseline (%)

 Independent of treatment, lower levels of proinflammatory cytokines were observed in patients with SVR35 response compared with SVR35 non-responder at Week 48

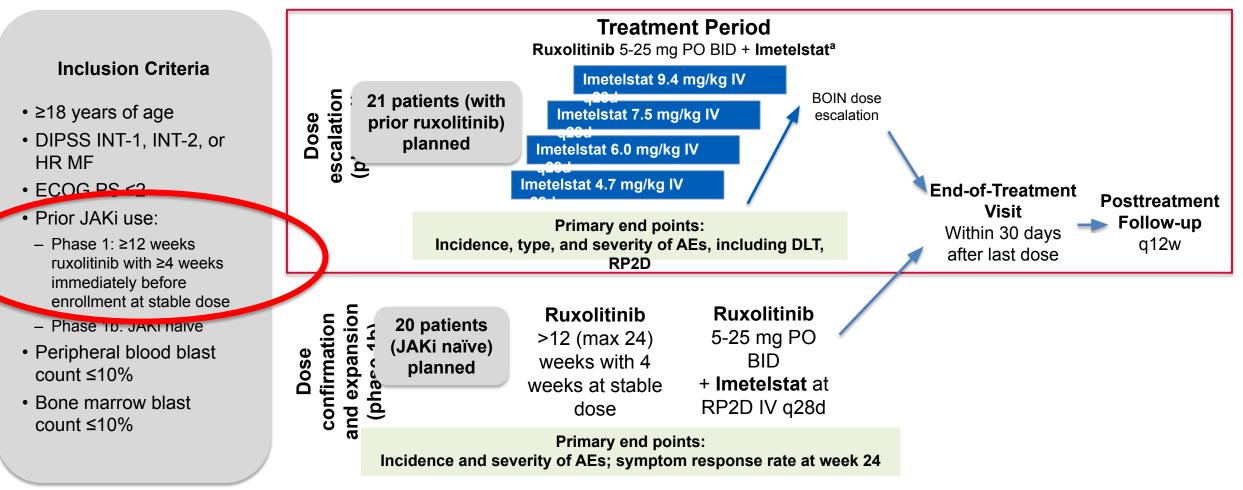
Data cutoff date: March 29, 2024. *n=207 evaluable patients (baseline and Cycle 17 Day 1); n=100 in the pelabresib + ruxolitinib arm and n=107 in the placebo + ruxolitinib arm. n=223 (52%) missing data. Proinflammatory cytokine levels were measured by bead-based multiplex assay from plasma. NF-kB set includes B2M, CRP, CD40-L, hepcidin, IL-6, IL-12p40, MIP-1 beta, MPIF-1, RANTES, TNFR2, TNF alpha, VCAM-1. B2M, beta-2 microglobulin; CD, cluster of differentiation; CI, confidence interval; CRP, C-reactive protein; IL, interleukin; MIP, macrophage inflammatory protein; MPIF, myeloid progenitor inhibitory factor; NF-kB, nuclear factor kappa B; RANTES, regulated upon activation, normal T cell expressed and secreted; SVR35, ≥35% reduction in spleen volume from baseline; TNF, tumor necrosis factor; TNFR, TNF receptor; VCAM, vascular cell adhesion protein.

Safety: Treatment-Emergent Adverse Events and Deaths at Week 48

Figure 8. TEAEs Reported in ≥10% of Patients in Either Arm*

As of the data cutoff date of March 29, 2024, TEAEs resulting in death occurred in 5.2% (11/212) of patients in the pelabresib + ruxolitinib arm versus 3.3% (7/214) of patients in the placebo + ruxolitinib arm

Data cutoff date: March 29, 2024. *Safety population: received at least one dose of study drug. TEAEs are regardless of relationship to study drug. A TEAE for the double-blind treatment period is defined as an AE that has a start date on or after the first dose of pelabresib/placebo and before 30 days after the last dose of pelabresib/placebo or before the start of alternative (off-study) treatment for MF, whichever occurs first. [†]Dysgeusia was successfully managed in most patients by dose reductions of pelabresib. AE, adverse event; COVID-19, coronavirus disease 2019; MF, myelofibrosis; TEAE, treatment-emergent adverse event.


Trial Update from IMproveMF, an Ongoing, Open-label, Dose-Escalation and -Expansion Phase 1/1b Trial to Evaluate the Safety, Pharmacokinetics, and Clinical Activity of the Novel Combination of Imetelstat with Ruxolitinib in Patients with Intermediate-1, Intermediate-2, or High-Risk Myelofibrosis

John O. Mascarenhas, MD,¹ Salman Otoukesh, MD,² Terrence Bradley, MD,³ Bart L. Scott, MD,⁴ Habte A. Yimer, MD,⁵ Souria Dougherty, MBA,⁶ Lixian Peng, PhD,⁶ Fei Huang, PhD,⁶ Ying Wan, MD, PhD,⁶ Faye M. Feller, MD,⁶ Vivian Rodolf, MD,⁶ Judy Ho, BS,⁶ Tymara Berry, MD,⁶ Andrew T. Kuykendall, MD⁷

¹Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ²City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ³University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA; ⁴Fred Hutchinson Cancer Center, Seattle, WA, USA; ⁵Texas Oncology/US Oncology Research, Tyler, TX, USA; ⁶Geron Corporation, Foster City, CA, USA; ⁷Moffitt Cancer Center, Tampa, FL, USA

Presentation 998 | Presented at the 66th American Society of Hematology (ASH) Annual Meeting and Exposition; December 7-10, 2024; San Diego, CA, USA

IMproveMF: Ongoing Multicenter Phase 1/1b Trial

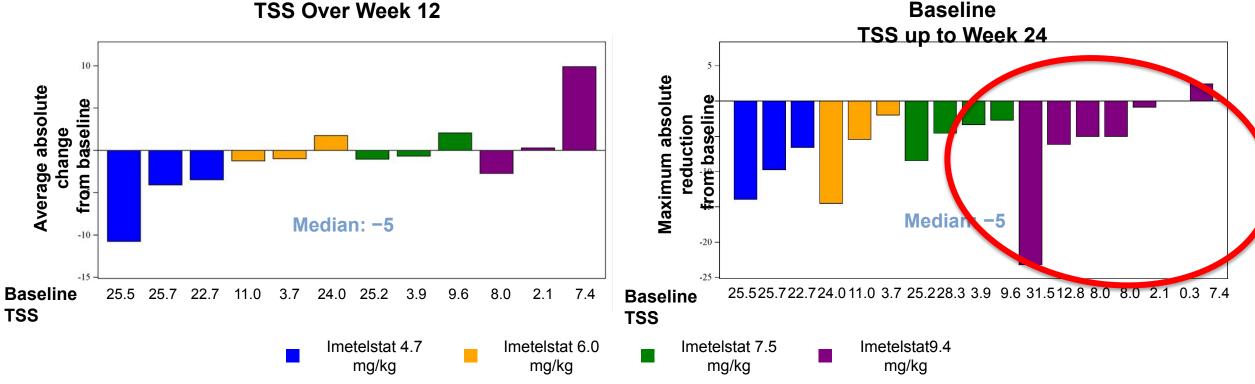
AE, adverse event; BID, twice daily; BOIN, Bayesian Optimal Interval Design; DIPSS, Dynamic International Prognostic Scoring System; DLT, dose-limiting toxicity; ECOG PS, Eastern Cooperative Oncology Group performance status; HR, high risk; INT, intermediate; IV, intravenous; JAKi, Janus kinase inhibitor; MF, myelofibrosis; PO, per oral; q12w, every 12 weeks; q28d, every 28 days; RP2D, recommended part 2 dose. ^aImetelstat sodium doses are listed, which are equivalent to 4.4, 5.6, 7.1, or 8.9 mg/kg active imetelstat doses, respectively.

Imetelstat Combined With Ruxolitinib Was Well Tolerated

No DLTs^a were reported at any imetelstat dose level within the first 28 days of cycle 1

Any-grade TEAEs in ≥15% of

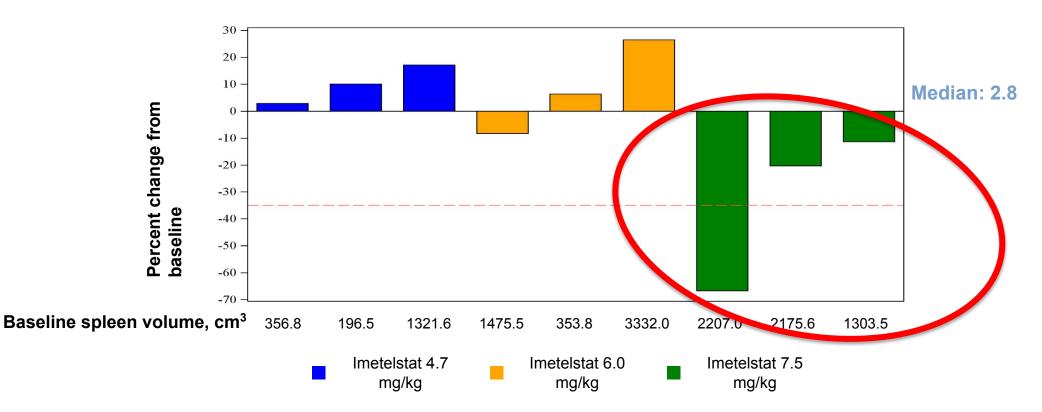
Grade 3 TEAEs


Preferred term, n (%)	Total (N=17)	Preferred term, n (%)	Total (N=17)
Patients with ≥1 TEAE	15 (88)	Patients with ≥1 grade 3 TEAE	8 (47)
Pain in extremity	7 (41)	Anemia ^d	4 (24)
Nausea	6 (35)	Neutropenia ^c	3 (18)
ALT increased	5 (29)	Leukopenia ^e	2 (12)
Anemia	5 (29)	Abdominal pain	1 (6)
Thrombocytopenia ^b	4 (24)	Fatigue	1 (6)
Fatigue	4 (24)	Pneumonia ^f	1 (6)
AST increased	3 (18)	Epistaxis ^f	1 (6)
Neutropenia ^c	3 (18)	 No grade 4 or 5 events were 	

ALT, alanine aminotransferase; AST, aspartate aminotransferase; DLT, dose-limiting toxicity; SAE, serious adverse event; TEAE, treatment-emergent adverse event.

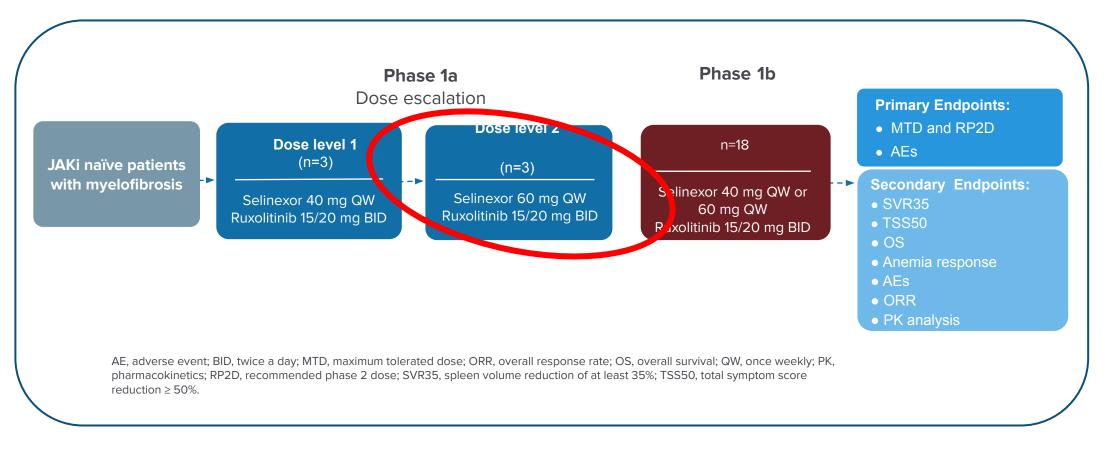
^aToxicities determined by the investigator to be possibly, probably, or definitely related to imetelstat treatment, and not attributable to the underlying disease, or toxicities with ruxolitinib increasing in grade and/or clinically significant from before imetelstat initiation. ^bCombined term includes decreased platelet count. ^cCombined term includes decreased neutrophil count. ^dOne was a SAE considered related to study treatments and resulted in dose reduction to 6.0 mg/kg. ^eCombined term includes decreased white blood cell count. ^fSAE considered to be related to underlying disease and resolved without dose modification.

Change in TSS From Baseline by Patient


Average Absolute Change From Baseline TSS Over Week 12

Maximum Absolute Reduction From

TSS, Total Symptom Score.


Spleen Volume Reduction by Patient at 24 Weeks

Percentage Change in Spleen Volume at Week 24

^aThe percent change for this patient is based on the spleen assessment at end of treatment due to the early discontinuation of treatment before week 24.

Phase 1 Study (XPORT-MF-034¹) Evaluating Selinexor in Combination with Ruxolitinib in Treatment-naïve Myelofibrosis

* Enrollment completed; 24 patients had been assigned to either a 40 mg (n=10) or 60 mg (n=14) once weekly dose of selinexor, in combination with ruxolitinib 15/20 mg BID (twice daily)

Rapid and Deep SVR35 Achieved with Selinexor 60 mg at Weeks 12 and 24

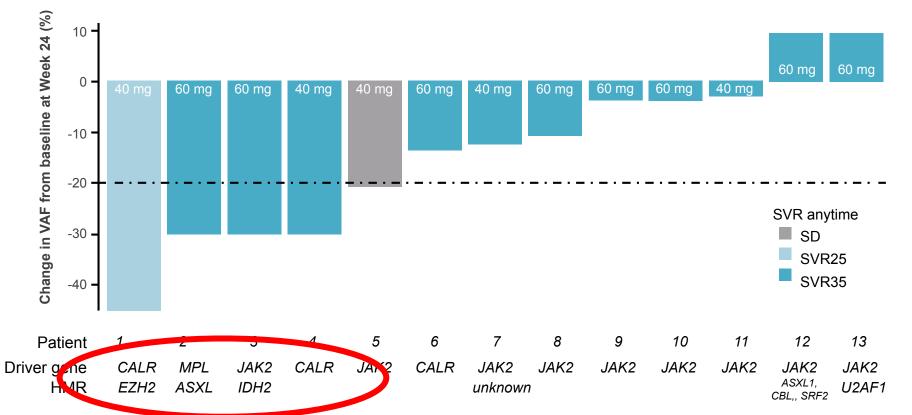
Population	Timepoint	Selinexor 40 mg +ruxolitinib n (%)	Selinexor 60 mg +ruxolitinib n (%)
Efficacy Evaluable	SVR35 at Week 12	3/10 (30.0)	10/12** (83.3)
	SVR35 at Week 24	4/8* (50.0)	11/12 (91.7)
	SVR35 at anytime	4/10 (40.0)	12/12 (100.0)
Intent-to-Treat	SVR35 at Week 12	3/10 (30.0)	10/14 (71.4)
	SVR35 at Week 24	4/10 (40.0)	11/14 (78.6)
	SVR35 at anytime	4/10 (40.0)	12/14 (85.7)

* Two patients discontinued prior to Week 24.

** One patient discontinued prior to week 12; one patient with missing data at week 12 who subsequently discontinued prior to week

24.

SVR35, spleen reduction volume \geq 35%

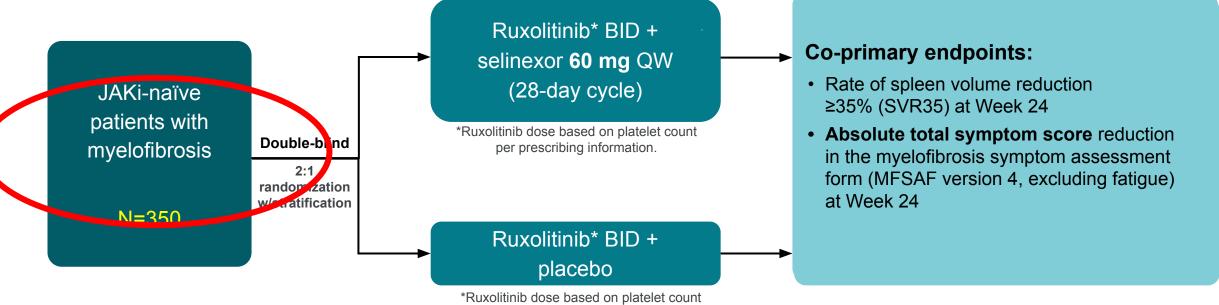

Treatment-Emergent Adverse Events (TEAEs) of Selinexor 60 mg QW Cohort*

TEAEs	Selinexor 60 mg QW + ruxolitinib	Prophylactic Antiemetic use Reduced the Incidence and Severity of Nausea		
12/120	(N = 14)	Nausea was transient in nature with a median duration ~2 cycles		
Any grade (≥ 30% overall), n (%)		6		
Nausea	11 (78.6)	4 Patients in the 60 mg cohort received one prophylactic antiemetic		
Anemia	9 (64.3)	0/		
Thrombocytopenia	9 (64.3)	0		
Fatigue	8 (57.1)	7 Of these patients had nausea (Grade 1 only)		
Constipation	7 (50.0)	Versus		
Vomiting	7 (50.0)	1		
Dyspnea	5 (35.7)			
Headache	5 (35.7)	Patients without antiemetic prophylaxis had nausea (Grades 1–3)		
Hyponatremia	5 (35.7)	2 .		
Leukopenia	5 (35.7)	5		
Neutropenia	5 (35.7)	Median weight gain at Week 24		
Grade 3+ (> 5%), n (%)		g		
Anemia	6 (42.9)			
Thrombocytopenia	4 (28.6)	Median Hemoglobin (Hgb) Levels and Platelet Counts Were Generally Stable		
Back pain	2 (14.3)	4		
Neutropenia	1 (7.1)	6 Transfusion-independent patients had stable Hb levels [†]		
Atrial fibrillation	1 (7.1)	%		
Leukopenia 1 (7.1)		Median Hgb levels (g/dL) 9. Baseline 8. Week 12 9. Week 24		
Treatment-related AEs leading to		Wediair rigb levels (g/dL) 9 Daseille 8 Week 12 1 Week 24		
treatment discontinuations, n (%)				
Thrombocytopenia, Grade 3	1 (7.1)	Median platelet levels 2 Descline 2 Musle 40		
Peripheral neuropathy, Grade 3	1 (7.1)	(×10 ⁹ /L) 2 Baseline 3 Week 12 3 Week 24		
		0 5 7		

AE, adverse event; Hb, hemoglobin; TEAE, treatment-emergent adverse event. 31

*Data cutoff date: August 01, 2023; [†]Patients who do not have Hb level decreased by > 2 g/dL from baseline over the entire treatment duration and who remained transfusion independent.

Variant Allele Frequency (VAF) at Week 24 With Selinexor (40 or 60 mg QW) Plus Ruxolitinib


Reduced allele burden regardless of driver gene mutations were observed in 13 evaluable patients*

- \geq 20% decreases in VAF were observed in five patients
 - Three of whom had \geq 50% VAF at baseline and were high molecular risk (HMR)
- 13 of 24 patients had VAF values at baseline and Week 24; 11 of these 13 achieved SVR35 at any time

32

SENTRY Phase 3: Trial design¹

per prescribing information.

Randomization stratified by:

- DIPSS risk category intermediate -1 vs. intermediate -2 or high-risk
- Spleen volume <1800 cm³ vs. >1800 cm³ by MRI/CT scan
- Baseline platelet counts 100–200 x 10⁹/L vs. >200 x 10⁹/L

BID, twice a day; CT, computerized tomography; DIPSS, Dynamic International Prognostic Scoring System; MFSAF, myelofibrosis symptom assessment form; MRI, magnetic resonance imaging; QW, once weekly; SVR35, spleen volume reduction >35%; TSS, total symptom score.

1. ClinicalTrials.gov. Available at: Study Details | Study of Selinexor in Combination with Ruxolitinib in Myelofibrosis | ClinicalTrials.gov. Accessed: 01 October 2024.

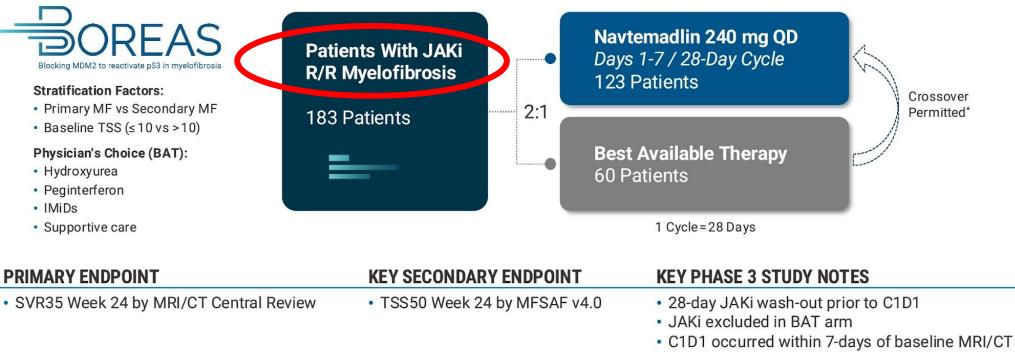
Abstract #1000

9 December 2024

Results from the Randomized, Multicenter, Global Phase 3 Study BOREAS: Navtemadlin Versus Best Available Therapy in JAK Inhibitor Relapsed/Refractory Myelofibrosis

John O. Mascarenhas, MD¹; Viola Maria Popov, MD, PhD, MSc²; Sanjay Mohan, MD³; Zübeyde Nur Özkurt, Prof.⁴; Jean-Jacques Kiladjian, MD, PhD⁵; Haifa Kathrin Al-Ali⁶; Andrew Charles Perkins, MBBS, PhD⁷; Zhuying Huang, PhD⁸; Hope Qamoos, NP⁸; Jesse McGreivy, MD⁸; Wayne Rothbaum, MA⁸; Srdan Verstovsek, MD, PhD⁸ and Maciej Kaźmierczak, MD, PhD⁹

¹Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY. ²Colentina Clinical Hospital Bucharest, Hematology Department, Pitesti, Arges, Romania. ³The Vanderbilt Clinic, Nashville, TN. ⁴Gazi University, Faculty of Medicine, Department of Hematology, Ankara, Turkey. ⁵Hopital Saint-Louis, Paris, France. ⁶University Hospital Halle, Halle (Saale), Germany. ⁷The Alfred Hospital and Monash University, Melbourne, Australia. ⁸Kartos Therapeutics, Inc., Redwood City, CA. ⁹University of Medical Sciences, Poznan, Poland.


PRESENTED BY: John O. Mascarenhas, MD Presentation is property of the author and ASH. Permission required for reuse: john.mascarenhas@mssm.edu

Phase 3 Study Design

A Randomized, Open-Label, Global Phase 3 Study of Navtemadlin in *TP53^{WT}* Patients With Myelofibrosis Who Are Relapsed or Refractory to JAK Inhibitor Treatment

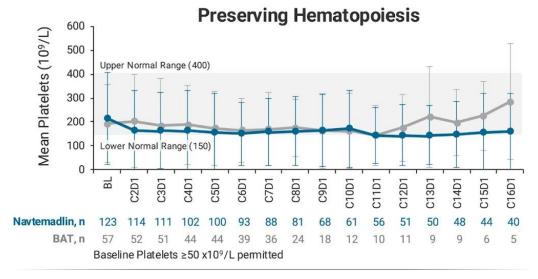
Diarrhea prophylaxis for first two cycles

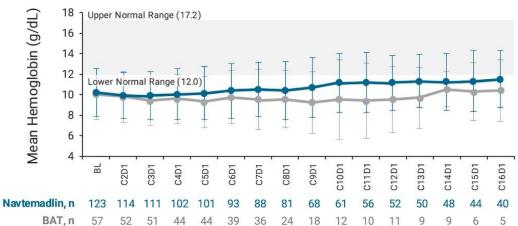
Note: BOREAS enrollment was closed at 183 subjects.

*Crossover in the BAT arm was permitted after disease progression or at Week 24.

Abbreviations: BAT, best available therapy; C1D1, cycle 1 day 1; CT, computed tomography; IMiDs, immunomodulatory imide drugs (lenalidomide, pomalidomide); JAK, Janus kinase; JAKi, Janus kinase inhibitor; MF, myelofibrosis; MFSAF, myelofibrosis symptoms assessment form; MRI, magnetic resonance imaging; QD, once daily; R/R, relapsed/refractory; SVR, spleen volume reduction; SVR35, spleen volume reduction ≥ 35%; TSS, total symptom score; TSS50, total symptom score reduction ≥ 50%; WT, wild-type.

PRESENTED BY: John O. Mascarenhas, MD





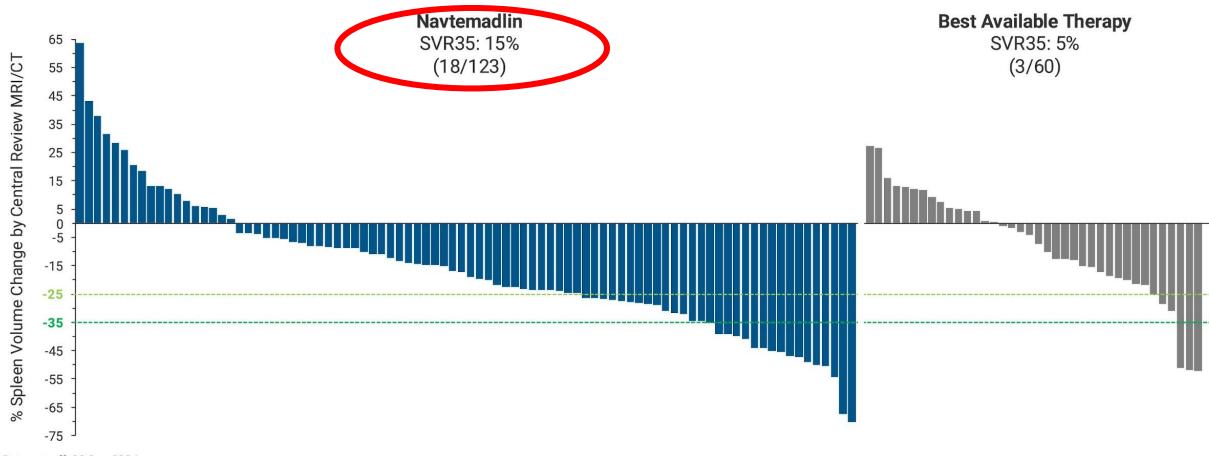
Treatment-Emergent Adverse Events

	Navtemadlin n = 123 ¹		Best Available Therapy n = 57 ^{1,2}	
Preferred Term, n (%)	All Grade	Grade 3/4	All Grade	Grade 3/4
TEAE Occurring in ≥ 10% ¹				
Thromboeyten enia?	37 (40)	43 (37)	10 (22)	14 (25)
Nausea	52 (42)	5 (4)	3 (5)	-
Diarrhea	50 (41)	7 (6)	9 (16)	1(2)
Anemia	44 (06)	05 (29)	16 (28)	16 (28)
Neutropenia ⁴	37 (30)	31 (25)	10 (18)	7 (12)
Constipation	25 (20)	1 (1)	2 (4)	y — .
Vomiting	31 (25)	3 (2)	1 (2)	-
Decreased Appetite	22 (18)	21.00 19.00 19.00	4 (7)	1 (2)
Fatigue	19 (15)	4 (3)	7 (12)	2 (4)
Peripheral Edema	15 (12)	-	7 (12)	1 (2)
Asthenia	16 (13)	2 (2)	5 (9)	1 (2)
Abdominal Pain, Upper	13 (11)	2 (2)	1 (2)	—
Pruritus	7 (6)		6 (11)	-

Median time on study, months (range): Navtemadlin 15.6 (0.23, 39.9); BAT 6.5 (0.03, 30.5)

Data cut-off: 30 Sep 2024.

Note: Navtemadlin dosed at 240 mg QD (Days 1-7/28-day cycle).


¹Safety dataset is all subjects who received ≥1 dose of study treatment. ²One subject randomized to BAT, first cycle was navtemadlin. ³Combined terms: thrombocytopenia and platelet count decrease. ⁴Combined terms: neutropenia and neutrophil count decrease. Abbreviations: BAT, best available therapy; BL, baseline; C, cycle; D, day; QD, once daily; TEAE, treatment-emergent adverse event.

PRESENTED BY: John O. Mascarenhas, MD Presentation is property of the author and ASH. Permission required for reuse: john.mascarenhas@mssm.edu

BOREAS

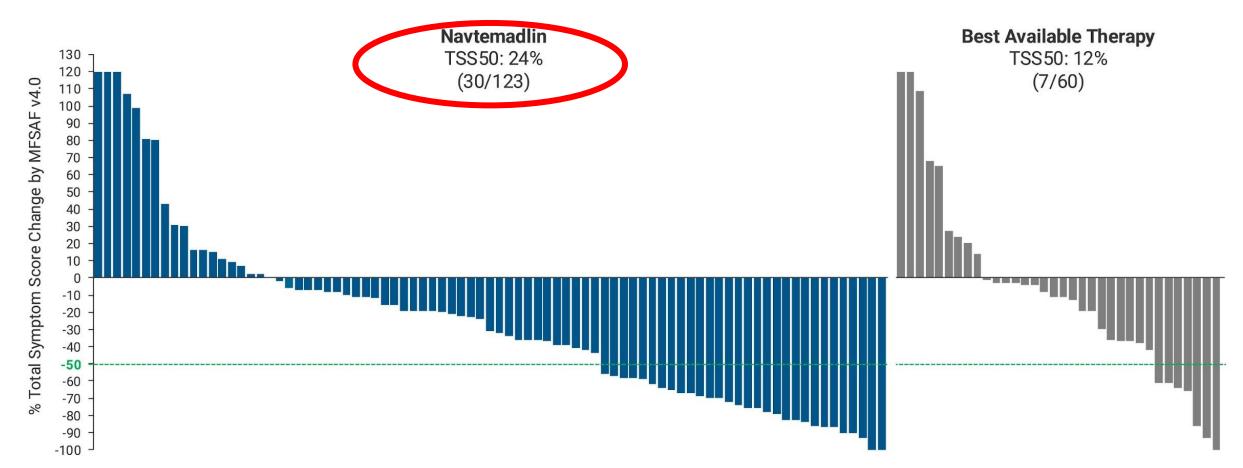
SVR35 at Week 24 (ITT Population)

Spleen Volume Reduction by Central Review MRI/CT - Baseline to Week 24

Data cut-off: 30 Sep 2024.

Note: Navtemadlin dosed at 240 mg QD (Days 1-7/28-day cycle). ITT is all randomized subjects. Figure represents subjects with baseline and Week 24 data. Navtemadlin vs BAT, p=0.0815. SVR25: Navtemadlin, 27% (33/123); BAT, 10% (6/60). BAT SVR35 responders received hydroxyurea (2) and lenalidomide (1). Abbreviations: BAT, best available therapy; CT, computed tomography; ITT, intention-to-treat; MRI, magnetic resonance imaging; SVR35, spleen volume reduction ≥ 35%.

PRESENTED BY: John O. Mascarenhas, MD Presentation is property of the author and ASH. Permission required for reuse: john.mascarenhas@mssm.edu



BOREAS

15

TSS50 at Week 24 (ITT Population)

Total Symptom Score Reduction by MFSAF v4.0 - Baseline to Week 24

Data cut-off: 30 Sep 2024

Note: Navtemadlin dosed at 240 mg QD (Days 1-7/28-day cycle). ITT is all randomized subjects. Figure represents subjects with baseline and Week 24 data. Navtemadlin vs BAT, p=0.0507. Week 24 TSS assessment includes Week 23 scores for subjects who stopped TSS at the start of Week 24 (n=2). Abbreviations: BAT, best available therapy; ITT, intention-to-treat; MFSAF, myelofibrosis symptom assessment form; TSS, total symptom score; TSS 50, total symptom score reduction \geq 50%.

PRESENTED BY: John O. Mascarenhas, MD

American Society *of* Hematology

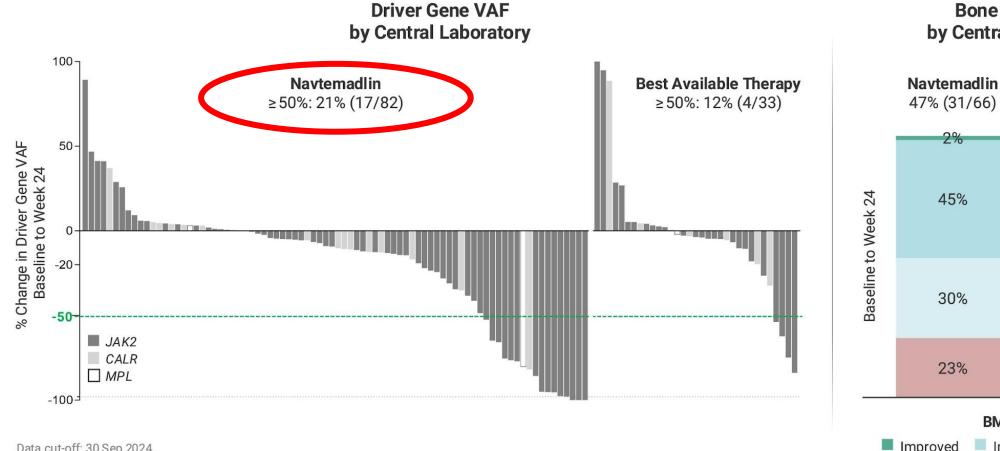
Presentation is property of the author and ASH. Permission required for reuse: john.mascarenhas@mssm.edu

Best Available Therapy

24% (7/29)

3%

21%


52%

24%

🛛 Improved 📃 Stable 💻 Worsened

Potential for Disease Modification

Driver Gene VAF Reduction and Bone Marrow Fibrosis Improvement - Baseline to Week 24

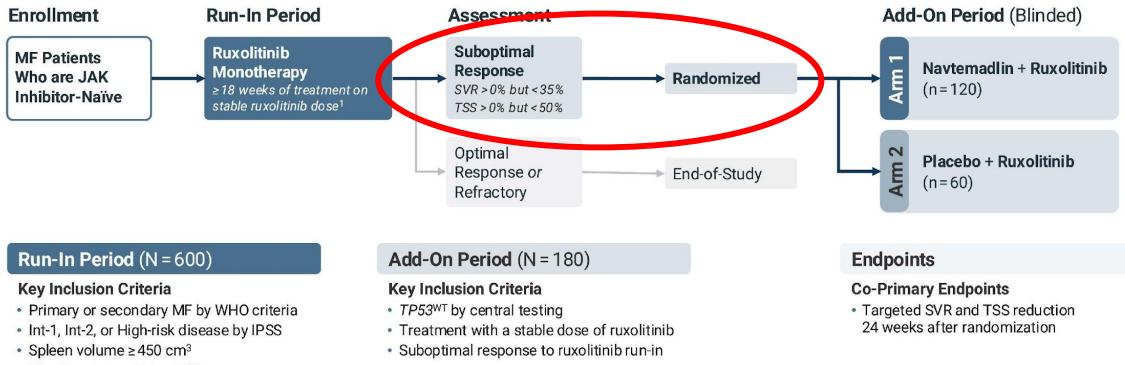
Bone Marrow Fibrosis by Central Pathology Review

BM Fibrosis Scores

1 Grade

Data cut-off: 30 Sep 2024. Note: Week 24 evaluable subjects shown. Abbreviations: BM, bone marrow; *CALR*, calreticulin; *JAK2*, Janus kinase 2; *MPL*, myeloproliferative leukemia virus oncogene; VAF, variant allele frequency.

PRESENTED BY: John O. Mascarenhas, MD


Presentation is property of the author and ASH. Permission required for reuse: john.mascarenhas@mssm.edu

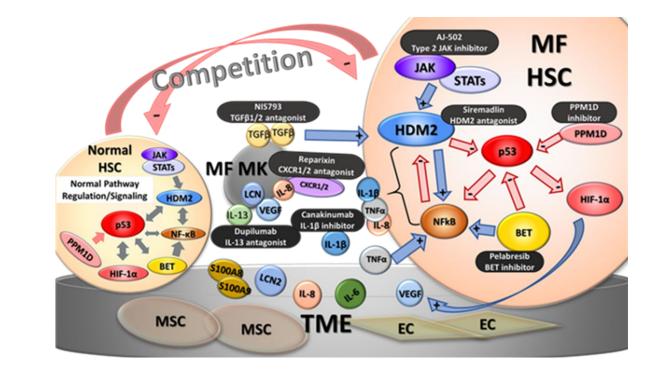
≥2 Grades

Navtemadlin in Suboptimal Responders to Ruxolitinib

A Phase 3 Randomized, Double-Blind, Add-On Study Evaluating the Safety and Efficacy of Navtemadlin and Ruxolitinib vs Placebo and Ruxolitinib in JAK Inhibitor-Naïve Patients With Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib Treatment

• Platelet count ≥100 x 10⁹/L

Note: Navtemadlin dosed at 240 mg QD (Days 1-7/28-day cycle). Target enrollment from 220 sites across 19 countries.


¹Stable ruxolitinib is ≥ 5 mg BID that does not require treatment hold or dose adjustment during the eight weeks prior to add-on navtemadlin or placebo. Abbreviations: BID, twice daily; Int, intermediate; IPSS, International Prognostic Scoring System; JAK, Janus kinase; MF, myelofibrosis; TSS, total symptom score; WHO, World Health Organization; WT, wild-type.

PRESENTED BY: John O. Mascarenhas, MD Presentation is property of the author and ASH. Permission required for reuse: john.mascarenhas@mssm.edu

New Drugs in MF= Better Options for Our Patients

- New JAK inhibitors
 - AJ-11095 type 2 JAK2 inhibitor
 - INCB160058 JAK2V617F selective inhibitor
- New non-JAK inhibitors
 - Nuvisertib PIM1 kinase inhibitor
 - Reparaxin CXCR 1/2 antagonist
 - INCA033989 mCALR antibody
- JAK inhibitor based combinations
 - MANIFEST-2: Pelabresib
 - SENTRY: Selinexor
 - IMproveMF: Imetelstat
 - POIESIS: Navtemadlin

